Patents by Inventor Sheng-Huan Tseng

Sheng-Huan Tseng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250025983
    Abstract: A polishing pad has a polishing layer comprising a polymer matrix comprising the reaction product of an isocyanate terminated urethane prepolymer and a chlorine-free aromatic polyamine cure agent and chlorine-free microelements. The microelements can be expanded, hollow microelements. The microelements can have a specific gravity measured of 0.01 to 0.2. The microelements can have a volume averaged particle size of 1 to 120 or 15 to 30 micrometers. The polishing layer is chlorine free.
    Type: Application
    Filed: October 8, 2024
    Publication date: January 23, 2025
    Inventors: Bainian Qian, Donna M. Alden, Matthew Cimoch, Nan-Rong Chiou, Sheng-Huan Tseng
  • Publication number: 20240091901
    Abstract: A polishing pad has a polishing layer comprising a polymer matrix comprising the reaction product of an isocyanate terminated urethane prepolymer and a chlorine-free aromatic polyamine cure agent and chlorine-free microelements. The microelements can be expanded, hollow microelements. The microelements can have a specific gravity measured of 0.01 to 0.2. The microelements can have a volume averaged particle size of 1 to 120 or 15 to 30 micrometers. The polishing layer is chlorine free.
    Type: Application
    Filed: November 7, 2023
    Publication date: March 21, 2024
    Inventors: Bainian Qian, Donna M. Alden, Matthew Cimoch, Nan-Rong Chiou, Sheng-Huan Tseng
  • Publication number: 20240009798
    Abstract: A polishing pad for chemical mechanical polishing comprises a polishing layer that comprises a polymer matrix that is the reaction product of an isocyanate terminated prepolymer with a curative, wherein the polymer matrix has hard segments and soft segments wherein multi-lobed polymeric elements formed from pre-expanded polymeric microspheres are present in the polymer matrix. The polishing pad can be made by preparing a pre-blend of the isocyanate terminated prepolymer and the pre-expanded fluid filled polymeric microspheres in a stirred tank; pumping a portion of the pre-blend from a bottom of the stirred tank through a conduit and recycling to a top region of the stirred tank, mixing a portion of the pre-blend with the curative to form a mixture, casting the mixture in a mold, curing the mixture in the mold.
    Type: Application
    Filed: July 11, 2022
    Publication date: January 11, 2024
    Inventors: Bainian Qian, Donna M. Alden, Sheng-Huan Tseng
  • Publication number: 20230015668
    Abstract: A polishing pad has a polishing layer comprising a polymer matrix comprising the reaction product of an isocyanate terminated urethane prepolymer and a chlorine-free aromatic polyamine cure agent and chlorine-free microelements. The microelements can be expanded, hollow microelements. The microelements can have a specific gravity measured of 0.01 to 0.2. The microelements can have a volume averaged particle size of 1 to 120 or 15 to 30 micrometers. The polishing layer is chlorine free.
    Type: Application
    Filed: July 1, 2021
    Publication date: January 19, 2023
    Inventors: Bainian Qian, Donna M. Alden, Matthew Cimoch, Nan-Rong Chiou, Sheng-Huan Tseng
  • Patent number: 10875144
    Abstract: The present invention provides methods of CMP polishing a metal surface, such as a copper or tungsten containing metal surface in a semiconductor wafer, the methods comprising CMP polishing the substrate with a CMP polishing pad that has a top polishing surface in a polishing layer which is the reaction product of an isocyanate terminated urethane prepolymer and a curative component comprising a polyol curative having a number average molecular weight of 6000 to 15,000, and having an average of 5 to 7 hydroxyl groups per molecule and a polyfunctional aromatic amine curative, wherein the polishing layer would if unfilled have a water uptake of 4 to 8 wt. % after one week of soaking in deionized (DI) water at room temperature. The methods form coplanar metal and dielectric or oxide layer surfaces with low defectivity and a minimized degree of dishing.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: December 29, 2020
    Assignee: ROHM AND HAAS ELECTRONIC MATERIALS CMP HOLDINGS, I
    Inventors: Bainian Qian, Fengji Yeh, Te-Chun Wang, Sheng-Huan Tseng, Kevin Wen-Huan Tung, Marty W. DeGroot
  • Publication number: 20180361531
    Abstract: The present invention provides methods of CMP polishing a metal surface, such as a copper or tungsten containing metal surface in a semiconductor wafer, the methods comprising CMP polishing the substrate with a CMP polishing pad that has a top polishing surface in a polishing layer which is the reaction product of an isocyanate terminated urethane prepolymer and a curative component comprising a polyol curative having a number average molecular weight of 6000 to 15,000, and having an average of 5 to 7 hydroxyl groups per molecule and a polyfunctional aromatic amine curative, wherein the polishing layer would if unfilled have a water to uptake of 4 to 8 wt. % after one week of soaking in deionized (DI) water at room temperature. The methods form coplanar metal and dielectric or oxide layer surfaces with low defectivity and a minimized degree of dishing.
    Type: Application
    Filed: August 8, 2018
    Publication date: December 20, 2018
    Inventors: Bainian Qian, Fengji Yeh, Te-Chun Wang, Sheng-Huan Tseng, Kevin Wen-Huan Tung, Marty W. DeGroot
  • Publication number: 20180281149
    Abstract: The present invention provides methods of CMP polishing a metal surface, such as a copper or tungsten containing metal surface in a semiconductor wafer, the methods comprising CMP polishing the substrate with a CMP polishing pad that has a top polishing surface in a polishing layer which is the reaction product of an isocyanate terminated urethane prepolymer and a curative component comprising a polyol curative having a number average molecular weight of 6000 to 15,000, and having an average of 5 to 7 hydroxyl groups per molecule and a polyfunctional aromatic amine curative, wherein the polishing layer would if unfilled have a water uptake of 4 to 8 wt. % after one week of soaking in deionized (DI) water at room temperature. The methods form coplanar metal and dielectric or oxide layer surfaces with low defectivity and a minimized degree of dishing.
    Type: Application
    Filed: March 31, 2017
    Publication date: October 4, 2018
    Inventors: Bainian Qian, Fengji Yeh, Te-Chun Wang, Sheng-Huan Tseng, Kevin Wen-Huan Tung, Marty W. DeGroot