Patents by Inventor Sheng-Kai Lin

Sheng-Kai Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240153812
    Abstract: A method for fabricating a semiconductor device includes the steps of first forming a shallow trench isolation (STI) in a substrate, forming a first gate structure on the substrate and adjacent to the STI, forming a first doped region between the first gate structure and the STI, forming a second doped region between the first doped region and the first gate structure, forming a first contact plug on the first doped region, and then forming a second contact plug on the second doped region.
    Type: Application
    Filed: December 4, 2022
    Publication date: May 9, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Wen-Kai Lin, Chi-Horn Pai, Sheng-Yuan Hsueh, Kuo-Hsing Lee, Chih-Kai Kang
  • Publication number: 20240154021
    Abstract: A p-GaN high-electron-mobility transistor (HEMT) includes a buffer layer stacked on a substrate, a channel layer stacked on the buffer layer, a supply layer stacked on the channel layer, a doped layer stacked on the supply layer, and a hydrogen barrier layer covering the supply layer and the doped layer. A source and a drain are electrically connected to the channel layer and the supply layer, respectively. A gate is located on the doped layer. The hydrogen barrier layer is doped with fluorine.
    Type: Application
    Filed: December 29, 2022
    Publication date: May 9, 2024
    Inventors: TING-CHANG CHANG, Wei-Chen Huang, Shih-Kai Lin, Yong-Ci Zhang, Sheng-Yao Chou, Chung-Wei Wu, Po-Hsun Chen
  • Publication number: 20230060751
    Abstract: A paper blocking device includes a pick roller, a cover plate, a paper blocking component, a driving mechanism, a gear mechanism and a motor. The cover plate has a pick roller window penetrated the cover plate. The pick roller is positioned in the pick roller window. The paper blocking component is coupled to the cover plate. The driving mechanism has a driving shaft and a cam being connected to the driving shaft. The cam is connected to the paper blocking component. The gear mechanism is connected to the driving shaft. The motor is connected to the gear mechanism. As described above, the paper blocking device can block papers and align the leading edges of papers.
    Type: Application
    Filed: January 5, 2022
    Publication date: March 2, 2023
    Inventors: Wei Fong Lin, Yuan Yi Lin, Sheng Kai Lin
  • Publication number: 20230033975
    Abstract: An adaptive image shading correction method and an adaptive image shading system are provided. The method includes: configuring an image capturing device to obtain a current frame; and configuring a processing unit to: divide the current frame into blocks; select block pairs from the blocks, in which each of the block pairs includes an inner block and an outer block; perform a filtering process for each of the block pairs to determine whether a brightness condition, a saturation condition, a hue similarity condition, and a sharpness similarity condition are met; in response to obtaining filtered block pairs, calculate a sum similarity threshold based on hue statistical data, a saturation difference, and a brightness difference; and use filtered blocks with individual thresholds less than the sum similarity threshold to calculate a shadow compensation value to adjust the current frame.
    Type: Application
    Filed: May 25, 2022
    Publication date: February 2, 2023
    Inventors: SHENG-KAI LIN, MIN-CHEN HSU, PAO-CHI YEH, KAI-WEN LAI, CHEN-CHIEH YAO
  • Publication number: 20220310887
    Abstract: A display device includes a circuit substrate, a blocker, a first and second pad located on the circuit substrate, a light-emitting element, and a first and second connecting portion. The blocker is located on the circuit substrate, and has an opposite first and second side and an opposite third and fourth side. The first pad is adjacent to the first side of the blocker. The second pad is adjacent to the second side of the blocker. The light-emitting element is located on the blocker and the first and second pads, and includes a first and second electrode. The first connecting portion is connected to the first electrode and the first pad. The second connecting portion is connected to the second electrode and the second pad. The third and fourth sides of the blocker are aligned with a side of each of the first and second connecting portions.
    Type: Application
    Filed: November 1, 2021
    Publication date: September 29, 2022
    Applicant: Au Optronics Corporation
    Inventors: Chung En Peng, Chung-Chan Liu, Chien-Cheng Chang, Sheng-Kai Lin, Hui-Ku Chang
  • Patent number: 11442210
    Abstract: A polarizer substrate includes a substrate, a reflective layer, and a metal pattern layer. The reflective layer is located on the substrate and has a transmission area and a reflective area. The metal pattern layer is located on the reflective layer and the substrate. The metal pattern layer includes a polarizer structure and a microstructure. The polarizer structure includes a plurality of grid lines overlapping the transmission area. A thickness of each of the grid lines is 200 nm to 500 nm, a width of each of the grid lines is 30 nm to 70 nm, and a distance between each adjacent two of the grid lines is 30 nm to 70 nm. The microstructure overlaps the reflective area, and a thickness of the microstructure is 20 nm to 500 nm.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: September 13, 2022
    Assignee: Au Optronics Corporation
    Inventors: Sheng-Kai Lin, Chia-Hsin Chung, Tsai-Sheng Lo, Sheng-Ming Huang, Ming-Jui Wang, Chih-Chiang Chen, Hui-Ku Chang, Cheng-Chan Wang, Chia-Po Lin, Jen-Kuei Lu
  • Patent number: 11392003
    Abstract: An active device substrate including a substrate, first metal grid wires, a first transparent conductive layer, a gate insulating layer, a semiconductor layer, a source, and a drain is provided. The first metal grid wires are located on the substrate. The first transparent conductive layer includes a scan line and a gate connected to the scan line. The scan line and/or the gate is directly connected to at least a part of the first metal grid wires. The gate insulating layer is located on the first transparent conductive layer. The semiconductor layer is located on the gate insulating layer and overlapped with the gate. The source and the drain are electrically connected to the semiconductor layer.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: July 19, 2022
    Assignee: Au Optronics Corporation
    Inventors: Cheng-Chan Wang, Tsai-Sheng Lo, Chia-Hsin Chung, Chih-Chiang Chen, Hui-Ku Chang, Sheng-Kai Lin, Chia-Po Lin, Ming-Jui Wang, Sheng-Ming Huang, Jen-Kuei Lu
  • Patent number: 11181769
    Abstract: A polarizer substrate includes a substrate, an organic planarization layer, an inorganic buffer layer, and a plurality of strip-shaped polarizer structures. The organic planarization layer is located on the substrate. The inorganic buffer layer is located on the organic planarization layer. The inorganic buffer layer has a plurality of trenches located on a first surface. The trenches do not penetrate through the inorganic buffer layer. The strip-shaped polarizer structures are located on the first surface of the inorganic buffer layer. Each of the trenches is located between two adjacent polarizer structures. A display panel is also provided.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: November 23, 2021
    Assignee: Au Optronics Corporation
    Inventors: Tsai-Sheng Lo, Chih-Chiang Chen, Ming-Jui Wang, Sheng-Kai Lin, Sheng-Ming Huang, Chia-Hsin Chung, Hui-Ku Chang, Wei-Chi Wang, Jen-Kuei Lu
  • Publication number: 20210255379
    Abstract: A polarizer substrate includes a substrate, a reflective layer, and a metal pattern layer. The reflective layer is located on the substrate and has a transmission area and a reflective area. The metal pattern layer is located on the reflective layer and the substrate. The metal pattern layer includes a polarizer structure and a microstructure. The polarizer structure includes a plurality of grid lines overlapping the transmission area. A thickness of each of the grid lines is 200 nm to 500 nm, a width of each of the grid lines is 30 nm to 70 nm, and a distance between each adjacent two of the grid lines is 30 nm to 70 nm. The microstructure overlaps the reflective area, and a thickness of the microstructure is 20 nm to 500 nm.
    Type: Application
    Filed: July 20, 2020
    Publication date: August 19, 2021
    Applicant: Au Optronics Corporation
    Inventors: Sheng-Kai Lin, Chia-Hsin Chung, Tsai-Sheng Lo, Sheng-Ming Huang, Ming-Jui Wang, Chih-Chiang Chen, Hui-Ku Chang, Cheng-Chan Wang, Chia-Po Lin, Jen-Kuei Lu
  • Publication number: 20210248341
    Abstract: A photosensitive device includes a display panel, a photosensitive element substrate, and a first quarter wave plate. The photosensitive element substrate is located on the back of the display panel. The photosensitive element substrate includes a first substrate, a plurality of first light emitting diodes, a plurality of photosensitive elements, and a first polarizer structure. The first light emitting diodes and the photosensitive elements are located on the first substrate. The first polarizer structure is located on the first light emitting diodes and the photosensitive elements. The first quarter wave plate is located between the first polarizer structure and the display panel.
    Type: Application
    Filed: July 21, 2020
    Publication date: August 12, 2021
    Applicant: Au Optronics Corporation
    Inventors: Chia-Po Lin, Tsai-Sheng Lo, Chih-Chiang Chen, Sheng-Ming Huang, Sheng-Kai Lin, Ming-Jui Wang, Chia-Hsin Chung, Hui-Ku Chang, Cheng-Chan Wang, Jen-Kuei Lu
  • Publication number: 20210247652
    Abstract: An active device substrate including a substrate, first metal grid wires, a first transparent conductive layer, a gate insulating layer, a semiconductor layer, a source, and a drain is provided. The first metal grid wires are located on the substrate. The first transparent conductive layer includes a scan line and a gate connected to the scan line. The scan line and/or the gate is directly connected to at least a part of the first metal grid wires. The gate insulating layer is located on the first transparent conductive layer. The semiconductor layer is located on the gate insulating layer and overlapped with the gate. The source and the drain are electrically connected to the semiconductor layer.
    Type: Application
    Filed: July 24, 2020
    Publication date: August 12, 2021
    Applicant: Au Optronics Corporation
    Inventors: Cheng-Chan Wang, Tsai-Sheng Lo, Chia-Hsin Chung, Chih-Chiang Chen, Hui-Ku Chang, Sheng-Kai Lin, Chia-Po Lin, Ming-Jui Wang, Sheng-Ming Huang, Jen-Kuei Lu
  • Patent number: 11054740
    Abstract: An imprint mold and a method for manufacturing the same are provided. The imprint mold includes a plurality of substantially identical or different mold patterns, wherein there isn't any height difference between the mold patterns.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: July 6, 2021
    Assignee: AU OPTRONICS CORPORATION
    Inventors: Sheng-Ming Huang, Sheng-Kai Lin, Chih-Chiang Chen, Hui-Ku Chang, Chia-Hsin Chung, Wei-Chi Wang, Ming-Jui Wang, Jen-Kuei Lu, Tsai-Sheng Lo, Huang-Kai Shen
  • Publication number: 20210176329
    Abstract: A control method of a system supporting fault tolerance is provided, at first, a first host executes a transmission control protocol agent to receive a data stream from a client device. Then the TCP agent transmits an acknowledgement packet to the client device in response to the data stream from the client device. Then the TCP agent determines whether a fault tolerance mechanism of the virtual machine is activated. When the TCP agent determines that the fault tolerance mechanism of the virtual machine is activated, the TCP agent determines whether the virtual machine operates in a running state. When the TCP agent determines that the virtual machine is not in the running state, the TCP agent temporarily storing the data stream. When the TCP agent determines that the virtual machine operates in a running state, the TCP agent transmits the data stream to the virtual machine.
    Type: Application
    Filed: July 28, 2020
    Publication date: June 10, 2021
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Sheng-Kai LIN, Po-Jui TSAO, Yu-Shiang LIN
  • Patent number: 10802189
    Abstract: A wire grid polarizer and a display panel using the same are provided. The wire grid polarizer includes a substrate, a plurality of wire grids, a plurality of patterned light absorbing layers, and a surface covering layer. The plurality of wire grids are disposed on the substrate, wherein there are a plurality of gaps between every two wire grids. The plurality of patterned light absorbing layers are disposed corresponding to and overlapping the wire grids respectively, wherein every two of the patterned light absorbing layers have one of the gaps. The surface covering layer is disposed on the patterned light absorbing layers and directly contacts the patterned light absorbing layers.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: October 13, 2020
    Assignee: AU OPTRONICS CORPORATION
    Inventors: Huang-Kai Shen, Sheng-Ming Huang, Jen-Kuei Lu, Chih-Chiang Chen, Hui-Ku Chang, Tsai-Sheng Lo, Chia-Hsin Chung, Wei-Chi Wang, Sheng-Kai Lin, Ming-Jui Wang
  • Publication number: 20200133061
    Abstract: A polarizer substrate includes a substrate, an organic planarization layer, an inorganic buffer layer, and a plurality of strip-shaped polarizer structures. The organic planarization layer is located on the substrate. The inorganic buffer layer is located on the organic planarization layer. The inorganic buffer layer has a plurality of trenches located on a first surface. The trenches do not penetrate through the inorganic buffer layer. The strip-shaped polarizer structures are located on the first surface of the inorganic buffer layer. Each of the trenches is located between two adjacent polarizer structures. A display panel is also provided.
    Type: Application
    Filed: May 9, 2019
    Publication date: April 30, 2020
    Applicant: Au Optronics Corporation
    Inventors: Tsai-Sheng Lo, Chih-Chiang Chen, Ming-Jui Wang, Sheng-Kai Lin, Sheng-Ming Huang, Chia-Hsin Chung, Hui-Ku Chang, Wei-Chi Wang, Jen-Kuei Lu
  • Publication number: 20200103572
    Abstract: A polarizer substrate and manufacturing method thereof are provided. The polarizer substrate includes a substrate, a plurality of polarizer structures, a plurality of barrier structures, and a passivation layer. The polarizer structures are disposed on the substrate. Each of the polarizer structures includes a wire-grid and a capping structure disposed on the wire-grid. The barrier structures are disposed on the capping structures and not contacting with the side walls of the wire-grids. A gap between two adjacent barrier structures is smaller than a gap between two adjacent wire-grids. The passivation layer is disposed on the barrier structures.
    Type: Application
    Filed: May 14, 2019
    Publication date: April 2, 2020
    Applicant: Au Optronics Corporation
    Inventors: Wei-Chi Wang, Chih-Chiang Chen, Tsai-Sheng Lo, Sheng-Kai Lin, Chia-Hsin Chung, Hui-Ku Chang, Ming-Jui Wang, Sheng-Ming Huang, Jen-Kuei Lu
  • Patent number: 10420903
    Abstract: An aerosol generating apparatus with interchangeable parts is disclosed. The aerosol generating apparatus includes a holder for accommodating a structure plate and an oscillation generator. The structure plate includes an inlet surface, an outlet surface, a projection extending from the face of the inlet surface, and a through hole. The through hole penetrates the structure plate. The oscillation generator is coupled with and vibrates the structure plate. A reservoir for providing a liquid medicament is also disclosed. The reservoir is detachably engaged with the holder and includes a membrane with a plurality of orifices. During aerosolization, the liquid medicament passes through the plurality of orifices. When the reservoir is engaged with the holder, the membrane of the reservoir is in contact with the projection extending from the face of the inlet surface. In addition, the oscillation generator vibrates the membrane through the projection on the inlet surface.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: September 24, 2019
    Assignee: MicroBase Technology Corp.
    Inventors: Po-Chuan Chen, Yi-Tong Chen, Sheng-Kai Lin, Ting-Kai Tsai, Laurence Kao
  • Publication number: 20190094435
    Abstract: A wire grid polarizer and a display panel using the same are provided. The wire grid polarizer includes a substrate, a plurality of wire grids, a plurality of patterned light absorbing layers, and a surface covering layer. The plurality of wire grids are disposed on the substrate, wherein there are a plurality of gaps between every two wire grids. The plurality of patterned light absorbing layers are disposed corresponding to and overlapping the wire grids respectively, wherein every two of the patterned light absorbing layers have one of the gaps. The surface covering layer is disposed on the patterned light absorbing layers and directly contacts the patterned light absorbing layers.
    Type: Application
    Filed: August 28, 2018
    Publication date: March 28, 2019
    Inventors: HUANG-KAI SHEN, SHENG-MING HUANG, JEN-KUEI LU, CHIH-CHIANG CHEN, HUI-KU CHANG, TSAI-SHENG LO, CHIA-HSIN CHUNG, WEI-CHI WANG, SHENG-KAI LIN, MING-JUI WANG
  • Publication number: 20190079394
    Abstract: An imprint mold and a method for manufacturing the same are provided. The imprint mold includes a plurality of substantially identical or different mold patterns, wherein there isn't any height difference between the mold patterns.
    Type: Application
    Filed: September 10, 2018
    Publication date: March 14, 2019
    Inventors: SHENG-MING HUANG, SHENG-KAI LIN, CHIH-CHIANG CHEN, HUI-KU CHANG, CHIA-HSIN CHUNG, WEI-CHI WANG, MING-JUI WANG, JEN-KUEI LU, TSAI-SHENG LO, HUANG-KAI SHEN
  • Patent number: 10025136
    Abstract: A touch polarizer and a touch display device are provided. The touch polarizer includes a first substrate, a transparent electrode layer, a wire-grid electrode layer, and a touch circuit. The transparent electrode layer is disposed on the first substrate. The wire-grid electrode layer is disposed on one side of the transparent electrode layer and includes a plurality of wires arranged parallel to each other and spaced to form a wire-grid. The touch circuit respectively connects to the transparent electrode layer and the plurality of wires and generates a touch signal based on a feedback from the transparent electrode layer and the wire-grid electrode layer.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: July 17, 2018
    Assignee: AU OPTRONICS CORPORATION
    Inventors: Chih-Sheng Chang, Sheng-Ming Huang, Sheng-Kai Lin, Wei-Chi Wang, Hui-Ku Chang, Ying-Hui Lai, Han-Sheng Nian, Ming-Jui Wang