Patents by Inventor Sheng-Kang YU

Sheng-Kang YU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11567415
    Abstract: A method for inspecting an extreme ultraviolet (EUV) light source includes: removing a collector mirror of the EUV light source from a collector chamber; installing an inspection apparatus within the collector chamber, the apparatus including a selectively extendable and retractable member and a camera at one end of the member; operating a first actuator to extend the member along a path through the interior chamber of the EUV light source, thereby moving the camera to a given position within the interior chamber of the EUV light source; operating a second actuator to pan the camera about an axis of rotation, thereby establishing a given camera orientation within the interior of the EUV light source; and, capturing an image of the interior chamber of the EUV light source with the camera while the camera is at the given position and orientation established by the operation of the first and second actuators.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: January 31, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Chiao-Hua Cheng, Shang-Chieh Chien, Heng-Hsin Liu, Li-Jui Chen, Sheng-Kang Yu
  • Publication number: 20220413398
    Abstract: An extreme ultraviolet (EUV) source includes a collector associated with the vessel. The extreme ultraviolet (EUV) source includes a plurality of vanes along walls of the vessel. Each vane includes a stacked vane segment, and the stacked vane segments for each vane are stacked in a direction of drainage of tin (Sn) in the vessel. The EUV source includes a thermal control system comprising a plurality of independently controllable heating elements, where a heating element is configured to provide localized control for heating of a vane segment of the stacked vane segments.
    Type: Application
    Filed: March 31, 2022
    Publication date: December 29, 2022
    Inventors: Cheng Hung TSAI, Sheng-Kang YU, Shang-Chieh CHIEN, Heng-Hsin LIU, Li-Jui CHEN
  • Publication number: 20220413401
    Abstract: Some implementations described herein provide a reticle cleaning device and a method of use. The reticle cleaning device includes a support member configured for extension toward a reticle within an extreme ultraviolet lithography tool. The reticle cleaning device also includes a contact surface disposed at an end of the support member and configured to bond to particles contacted by the contact surface. The reticle cleaning device further includes a stress sensor configured to measure an amount of stress applied to the support member at the contact surface. During a cleaning operation in which the contact surface is moving toward the reticle, the stress sensor may provide an indication that the amount of stress applied to the support member satisfies a threshold. Based on satisfying the threshold, movement of the contact surface and/or the support member toward the reticle ceases to avoid damaging the reticle.
    Type: Application
    Filed: March 22, 2022
    Publication date: December 29, 2022
    Inventors: Che-Chang HSU, Sheng-Kang YU, Shang-Chieh CHIEN, Li-Jui CHEN, Heng-Hsin LIU
  • Publication number: 20220404722
    Abstract: A plurality of hydrogen outlets are arrayed along a direction normal to a surface (such as a surface of a collector) of an extreme ultraviolet lithography (EUV) tool to increase a volume of hydrogen gas surrounding the surface. As a result, airborne tin is more likely to be stopped by the hydrogen gas surrounding the surface and less likely to bind to the surface. Fewer tin deposits results in increased lifetime for the surface, which reduces downtime for the EUV tool. Additionally, a control device may receive (e.g., from a camera and/or another type of sensor) an indication of levels of tin contamination on the surface and control flow rates to adjust a thickness of the hydrogen curtain. As a result, tin contamination on the collector is less likely to occur and will be more efficiently cleaned by the hydrogen gas, which results in increased lifetime for the surface and reduced downtime for the EUV tool.
    Type: Application
    Filed: February 23, 2022
    Publication date: December 22, 2022
    Inventors: Tzu-Jung PAN, Sheng-Kang YU, Shang-Chieh CHIEN, Heng-Hsin LIU, Li-Jui CHEN
  • Publication number: 20220359097
    Abstract: A radiation source apparatus includes a vessel, a laser source, a collector, and a reflective mirror. The vessel has an exit aperture. The laser source is at one end of the vessel and configured to excite a target material to form a plasma. The collector is disposed in the vessel and configured to collect a radiation emitted by the plasma and to direct the collected radiation to the exit aperture of the vessel. The reflective mirror is in the vessel and configured to reflect the laser beam toward an edge of the vessel.
    Type: Application
    Filed: August 20, 2021
    Publication date: November 10, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Chung TU, Sheng-Kang YU, Shang-Chieh CHIEN, Li-Jui CHEN, Heng-Hsin LIU
  • Publication number: 20220350266
    Abstract: Microwave heating of debris collecting vanes within the source vessel of a lithography apparatus is used to accomplish uniform temperature distribution in order to reduce fall-on contamination and formation of clogs on the inner and outer surfaces of the vanes.
    Type: Application
    Filed: September 28, 2021
    Publication date: November 3, 2022
    Inventors: Cheng Hung TSAI, Sheng-Kang YU, Shang-Chieh CHIEN, Heng-Hsin LIU, Li-Jui CHEN
  • Publication number: 20220342323
    Abstract: A method includes irradiating debris deposited in an extreme ultraviolet (EUV) lithography system with laser, controlling one or more of a wavelength of the laser or power of the laser to selectively vaporize the debris and limit damage to the EUV) lithography system, and removing the vaporized debris.
    Type: Application
    Filed: December 10, 2021
    Publication date: October 27, 2022
    Inventors: Chun-Han LIN, Chieh HSIEH, Sheng-Kang YU, Shang-Chieh CHIEN, Heng-Hsin LIU, Li-Jui CHEN
  • Publication number: 20220334472
    Abstract: A method includes: depositing a mask layer over a substrate; directing first radiation reflected from a central collector section of a sectional collector of a lithography system toward the mask layer according to a pattern; directing second radiation reflected from a peripheral collector section of the sectional collector toward the mask layer according to the pattern, wherein the peripheral collector section is vertically separated from the central collector section by a gap; forming openings in the mask layer by removing first regions of the mask layer exposed to the first radiation and second regions of the mask layer exposed to the second radiation; and removing material of a layer underlying the mask layer exposed by the openings.
    Type: Application
    Filed: April 16, 2021
    Publication date: October 20, 2022
    Inventors: Cheng Hung TSAI, Sheng-Kang YU, Shang-Chieh CHIEN, Heng-Hsin LIU, Li-Jui CHEN
  • Publication number: 20220328331
    Abstract: A system for a semiconductor fabrication facility includes a maintenance tool, a control unit, a first track, a second track, a maintenance crane movably mounted on the first track, a plurality of first sensors disposed on the first track, an OHT vehicle movably mounted on the second track, and a second sensor on the OHT vehicle. The first sensors detect a location of the maintenance crane and generate a first location data to the control unit. The second sensor generates a second location data to the control unit.
    Type: Application
    Filed: June 29, 2022
    Publication date: October 13, 2022
    Inventors: FU-HSIEN LI, SHENG-KANG YU, CHI-FENG TUNG, HSIANG YIN SHEN, GUANCYUN LI
  • Publication number: 20220326624
    Abstract: A method for inspecting an extreme ultraviolet (EUV) light source includes: removing a collector mirror of the EUV light source from a collector chamber; installing an inspection apparatus within the collector chamber, the apparatus including a selectively extendable and retractable member and a camera at one end of the member; operating a first actuator to extend the member along a path through the interior chamber of the EUV light source, thereby moving the camera to a given position within the interior chamber of the EUV light source; operating a second actuator to pan the camera about an axis of rotation, thereby establishing a given camera orientation within the interior of the EUV light source; and, capturing an image of the interior chamber of the EUV light source with the camera while the camera is at the given position and orientation established by the operation of the first and second actuators.
    Type: Application
    Filed: July 22, 2021
    Publication date: October 13, 2022
    Inventors: Chiao-Hua Cheng, Shang-Chieh Chien, Heng-Hsin Liu, Li-Jui Chen, Sheng-Kang Yu
  • Patent number: 11380566
    Abstract: A system for a semiconductor fabrication facility includes a manufacturing tool including a load port, a maintenance crane, a rectangular zone overlapping with the load port of the manufacturing tool, a plurality of first sensors at corners of the rectangular zone, an OHT vehicle, a second sensor on the OHT vehicle, a third sensor on the load port, and a control unit. The first sensors are configured to detect a location of the maintenance crane and to generate a first location data. The second sensor is configured to generate a second location data. The control unit is configured to receive the first location data of the maintenance crane and the second location data of the OHT vehicle. The control unit further sends signals to the second sensor and the third sensor or to cut off the signal to the second sensor.
    Type: Grant
    Filed: December 25, 2020
    Date of Patent: July 5, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Fu-Hsien Li, Sheng-Kang Yu, Chi-Feng Tung, Hsiang Yin Shen, Guancyun Li
  • Patent number: 11243479
    Abstract: A method of controlling a temperature of the semiconductor device includes operating an semiconductor apparatus; maintaining a temperature of a vessel of the semiconductor apparatus with a first cooling output by a cooling controller; heating the vessel for removing a material on the vessel; transferring a first signal, by a converter, to the cooling controller when heating the vessel; and reducing the first cooling output to a second cooling output by the cooling controller base on the first signal.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: February 8, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsiang Chen, Sheng-Kang Yu, Shang-Chieh Chien, Li-Jui Chen
  • Publication number: 20210208508
    Abstract: An EUV collector mirror for an extreme ultra violet (EUV) radiation source apparatus includes an EUV collector mirror body on which a reflective layer as a reflective surface is disposed, a heater attached to or embedded in the EUV collector mirror body and a drain structure to drain melted metal from the reflective surface of the EUV collector mirror body to a back side of the EUV collector mirror body.
    Type: Application
    Filed: March 22, 2021
    Publication date: July 8, 2021
    Inventors: Yu-Chih CHEN, Po-Chung CHENG, Li-Jui CHEN, Shang-Chieh CHIEN, Sheng-Kang YU, Wei-Chun YEN
  • Publication number: 20210149317
    Abstract: A method of controlling a temperature of the semiconductor device includes operating an semiconductor apparatus; maintaining a temperature of a vessel of the semiconductor apparatus with a first cooling output by a cooling controller; heating the vessel for removing a material on the vessel; transferring a first signal, by a converter, to the cooling controller when heating the vessel; and reducing the first cooling output to a second cooling output by the cooling controller base on the first signal.
    Type: Application
    Filed: November 14, 2019
    Publication date: May 20, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsiang CHEN, Sheng-Kang YU, Shang-Chieh CHIEN, Li-Jui CHEN
  • Publication number: 20210118709
    Abstract: A system for a semiconductor fabrication facility includes a manufacturing tool including a load port, a maintenance crane, a rectangular zone overlapping with the load port of the manufacturing tool, a plurality of first sensors at corners of the rectangular zone, an OHT vehicle, a second sensor on the OHT vehicle, a third sensor on the load port, and a control unit. The first sensors are configured to detect a location of the maintenance crane and to generate a first location data. The second sensor is configured to generate a second location data. The control unit is configured to receive the first location data of the maintenance crane and the second location data of the OHT vehicle. The control unit further sends signals to the second sensor and the third sensor or to cut off the signal to the second sensor.
    Type: Application
    Filed: December 25, 2020
    Publication date: April 22, 2021
    Inventors: FU-HSIEN LI, SHENG-KANG YU, CHI-FENG TUNG, HSIANG YIN SHEN, GUANCYUN LI
  • Patent number: 10955752
    Abstract: An EUV collector mirror for an extreme ultra violet (EUV) radiation source apparatus includes an EUV collector mirror body on which a reflective layer as a reflective surface is disposed, a heater attached to or embedded in the EUV collector mirror body and a drain structure to drain melted metal from the reflective surface of the EUV collector mirror body to a back side of the EUV collector mirror body.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: March 23, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Chih Chen, Po-Chung Cheng, Li-Jui Chen, Shang-Chieh Chien, Sheng-Kang Yu, Wei-Chun Yen
  • Patent number: 10879093
    Abstract: A system for a semiconductor fabrication facility includes a manufacturing tool including a load port, a maintenance tool including a first track and at least one maintenance crane on the first track, a rectangular zone overlapping with the load port, a plurality of first sensors on the first track and at corners of the rectangular zone configured to detect a location of the maintenance crane and generate a first location date, a transporting tool including a second track and a OHT vehicle on the second track, at least a second sensor on the OHT vehicle and configured to generate a second location data, at least a third sensor on the load port, and a control unit configured to receive the first location data and the second location data, and send signals to the second sensor and the third sensor or to cut off the signal to the second sensor.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: December 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Fu-Hsien Li, Sheng-Kang Yu, Chi-Feng Tung, Hsiang Yin Shen, Guancyun Li
  • Patent number: 10875060
    Abstract: Debris is removed from a collector of an extreme ultraviolet light source vessel by applying a suction force through a vacuum opening of a cable. The method for removing debris also includes weakening debris attachment by using a sticky surface or by spreading a solution through a nozzle, wherein the sticky surface and the nozzle are arranged on the cable proximal to the vacuum opening. A borescope system and interchangeable rigid portions of the cable assists in targeting a target area of the collector where the debris is.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: December 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shang-Ying Wu, Ming-Hsun Tsai, Sheng-Kang Yu, Yung-Teng Yu, Chi Yang, Shang-Chieh Chien, Chia-Chen Chen, Li-Jui Chen, Po-Chung Cheng
  • Patent number: 10871647
    Abstract: An EUV collector mirror for an extreme ultra violet (EUV) radiation source apparatus includes an EUV collector mirror body on which a reflective layer as a reflective surface is disposed, a trajectory correcting device attached to or embedded in the EUV collector mirror body and a trajectory correcting device to adjust the trajectory of metal from the reflective surface of the EUV collector mirror body to an opposite side of the EUV collector mirror body.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: December 22, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-An Liu, Gwan-Sin Chang, Bharath Kumar Pulicherla, Li-Jui Chen, Sheng-Kang Yu, Chung-Cheng Wu, Zhiqiang Wu
  • Patent number: 10859928
    Abstract: An extreme ultraviolet (EUV) radiation source apparatus includes a collector and a target droplet generator for generating a tin (Sn) droplet. A debris collection device is disposed over a reflection surface of the collector, and at least one drip hole is located between the debris collection device and the collector. A tin bucket for collecting debris from the debris collection device is located below the at least one drip hole, and a tube or guide rod extends from the drip hole to the tin bucket.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: December 8, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Chih Chen, Sheng-Kang Yu, Chi Yang, Shang-Chieh Chien, Li-Jui Chen, Po-Chung Cheng