Patents by Inventor Shengwen Liu

Shengwen Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11978912
    Abstract: Atomically dispersed platinum-group metal-free catalyst and method for synthesizing the same. According to one embodiment, the catalyst is made by a method in which, in a first step, a metal oxide/zeolitic imidazolate frameworks (ZIF) composite is formed by combining (i) nanoparticles of an oxide of at least one of iron, cobalt, nickel, manganese, and copper, (ii) a hydrated zinc salt, and (iii) an imidazole. Then, in a second step, the metal oxide/ZIF composite is thermally activated, i.e., carbonized, to form an M-N—C catalyst. Thereafter, the M-N—C catalyst may be mixed with a quantity of ammonium chloride, and then the M-N—C/NH4Cl mixture may be pyrolyzed. The foregoing NH4Cl treatment may improve the intrinsic activity of the catalyst. Then, a thin layer of nitrogen-doped carbon may be added to NH4Cl-treated M-N—C catalyst by chemical vapor deposition (CVD). Such CVD treatment may improve the stability of the catalyst.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: May 7, 2024
    Assignees: The Research Foundation for the State University of New York, Giner, Inc.
    Inventors: Gang Wu, Hui Xu, Shengwen Liu, Shuo Ding
  • Publication number: 20220190356
    Abstract: Atomically dispersed platinum-group metal-free catalyst and method for synthesizing the same. According to one embodiment, the catalyst is made by a method in which, in a first step, a metal oxide/zeolitic imidazolate frameworks (ZIF) composite is formed by combining (i) nanoparticles of an oxide of at least one of iron, cobalt, nickel, manganese, and copper, (ii) a hydrated zinc salt, and (iii) an imidazole. Then, in a second step, the metal oxide/ZIF composite is thermally activated, i.e., carbonized, to form an M-N—C catalyst. Thereafter, the M-N—C catalyst may be mixed with a quantity of ammonium chloride, and then the M-N—C/NH4Cl mixture may be pyrolyzed. The foregoing NH4Cl treatment may improve the intrinsic activity of the catalyst. Then, a thin layer of nitrogen-doped carbon may be added to NH4Cl-treated M-N—C catalyst by chemical vapor deposition (CVD). Such CVD treatment may improve the stability of the catalyst.
    Type: Application
    Filed: November 19, 2021
    Publication date: June 16, 2022
    Inventors: Gang Wu, Hui Xu, Shengwen Liu, Shuo Ding