Patents by Inventor Sheng-Wen Yu

Sheng-Wen Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11387363
    Abstract: A method includes forming a first channel region and a first gate structure formed over the first channel region. A first source/drain region is formed adjacent the first channel region and the first source/drain region includes a crystalline structure doped with a first dopant. A first silicide is formed over the first source/drain region. The first source/drain region includes a first concentration of the first dopant between 2.0×1021 atoms per centimeter cubed and 4.0×1021 atoms per centimeter cubed at a depth of 8 to 10 nanometers.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: July 12, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Sheng-Wen Yu, Ziwei Fang
  • Publication number: 20200350430
    Abstract: A method includes forming a first channel region and a first gate structure formed over the first channel region. A first source/drain region is formed adjacent the first channel region and the first source/drain region includes a crystalline structure doped with a first dopant. A first silicide is formed over the first source/drain region. The first source/drain region includes a first concentration of the first dopant between 2.0×1021 atoms per centimeter cubed and 4.0×1021 atoms per centimeter cubed at a depth of 8 to 10 nanometers.
    Type: Application
    Filed: July 20, 2020
    Publication date: November 5, 2020
    Inventors: Chun Hsiung Tsai, Sheng-Wen Yu, Ziwei Fang
  • Patent number: 10720529
    Abstract: A method includes forming a first channel region and a first gate structure formed over the first channel region. A first source/drain region is formed adjacent the first channel region and the first source/drain region includes a crystalline structure doped with a first dopant. A first silicide is formed over the first source/drain region. The first source/drain region includes a first concentration of the first dopant between 2.0×1021 atoms per centimeter cubed and 4.0×1021 atoms per centimeter cubed at a depth of 8 to 10 nanometers.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: July 21, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Sheng-Wen Yu, Ziwei Fang
  • Publication number: 20190140089
    Abstract: A method includes forming a first channel region and a first gate structure formed over the first channel region. A first source/drain region is formed adjacent the first channel region and the first source/drain region includes a crystalline structure doped with a first dopant. A first silicide is formed over the first source/drain region. The first source/drain region includes a first concentration of the first dopant between 2.0×1021 atoms per centimeter cubed and 4.0×1021 atoms per centimeter cubed at a depth of 8 to 10 nanometers.
    Type: Application
    Filed: December 17, 2018
    Publication date: May 9, 2019
    Inventors: Chun Hsiung Tsai, Sheng-Wen Yu, Ziwei Fang
  • Patent number: 10158019
    Abstract: A device includes a first channel region and a first gate structure formed over the first channel region. A first source/drain region is adjacent the first channel region and the first source/drain region includes a crystalline structure doped with a first dopant. A first silicide is formed over the first source/drain region. The first source/drain region includes a first concentration of the first dopant between 2.0×1021 atoms per centimeter cubed and 4.0×1021 atoms per centimeter cubed at a depth of 8 to 10 nanometers. A gradient of decreasing concentration of the first dopant is one decade for every 5.5 to 7.5 nanometers deeper than the first concentration.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: December 18, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Sheng-Wen Yu, Ziwei Fang
  • Patent number: 10134896
    Abstract: A semiconductor substructure with an improved source/drain structure is described. The semiconductor substructure can include an upper surface; a gate structure formed over the substrate; a spacer formed along a sidewall of the gate structure; and a source/drain structure disposed adjacent the gate structure. The source/drain structure is disposed over or on a recess surface of a recess that extends below said upper surface. The source/drain structure includes a first epitaxial layer, having a first composition, over or on the interface surface, and a subsequent epitaxial layer, having a subsequent composition, over or on the first epitaxial layer. A dopant concentration of the subsequent composition is greater than a dopant concentration of the first composition, and a carbon concentration of the first composition ranges from 0 to 1.4 at.-%. Methods of making semiconductor substructures including improved source/drain structures are also described.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: November 20, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun Hsiung Tsai, Sheng-Wen Yu, Ying-Min Chou, Yi-Fang Pai
  • Patent number: 9953878
    Abstract: A method of forming a semiconductor device is provided. The method includes forming a recess in a substrate and forming a first dielectric layer in the recess. A portion of the first dielectric layer is removed. A second dielectric layer is formed over the first dielectric layer. A gate structure is formed over the second dielectric layer.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: April 24, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Yu-Lien Huang, Tung Ying Lee, Pei-Yi Lin, Chun-Hsiang Fan, Sheng-Wen Yu, Neng-Kuo Chen, Ming-Huan Tsai
  • Publication number: 20170330963
    Abstract: A device includes a first channel region and a first gate structure formed over the first channel region. A first source/drain region is adjacent the first channel region and the first source/drain region includes a crystalline structure doped with a first dopant. A first silicide is formed over the first source/drain region. The first source/drain region includes a first concentration of the first dopant between 2.0×1021 atoms per centimeter cubed and 4.0×1021 atoms per centimeter cubed at a depth of 8 to 10 nanometers. A gradient of decreasing concentration of the first dopant is one decade for every 5.5 to 7.5 nanometers deeper than the first concentration.
    Type: Application
    Filed: July 31, 2017
    Publication date: November 16, 2017
    Inventors: Chun Hsiung Tsai, Sheng-Wen Yu, Ziwei Fang
  • Patent number: 9722083
    Abstract: An embodiment method of forming a source/drain region for a transistor includes forming a recess in a substrate, epitaxially growing a semiconductor material in the recess, amorphizing the semiconductor material, and doping the semiconductor material to form a source/drain region. In an embodiment, the doping utilizes either phosphorus or boron as the dopant. Also, the amorphizing and the doping may be performed simultaneously. The amorphizing may be performed at least in part by doping with helium.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: August 1, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Sheng-Wen Yu, Ziwei Fang
  • Patent number: 9482518
    Abstract: Methods and systems that include receiving a plurality of reflectivity measurements on a semiconductor wafer. A reflectivity map is generated based on the received plurality of reflectivity measurements. The generated reflectivity map is used to determine a process parameter of an epitaxial growth process using the reflectivity map. In an embodiment, the process parameter is a power setting (heating) of a lamp of a CVD epitaxy tool.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: November 1, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun Hsiung Tsai, Sheng-Wen Yu, De-Wei Yu
  • Publication number: 20160155671
    Abstract: A method of forming a semiconductor device is provided. The method includes forming a recess in a substrate and forming a first dielectric layer in the recess. A portion of the first dielectric layer is removed. A second dielectric layer is formed over the first dielectric layer. A gate structure is formed over the second dielectric layer.
    Type: Application
    Filed: February 4, 2016
    Publication date: June 2, 2016
    Inventors: Yu-Lien Huang, Tung Ying Lee, Pei-Yi Lin, Chun-Hsiang Fan, Sheng-Wen Yu, Neng-Kuo Chen, Ming-Huan Tsai
  • Patent number: 9257323
    Abstract: A semiconductor device includes a substrate and a gate structure formed over the substrate. The semiconductor device further includes an insulator feature formed in the substrate. The insulator feature includes an insulating layer and a capping layer over the insulating layer.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: February 9, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Lien Huang, Tung Ying Lee, Pei-Yi Lin, Chun-Hsiang Fan, Sheng-Wen Yu, Neng-Kuo Chen, Ming-Huan Tsai
  • Publication number: 20150292868
    Abstract: Methods and systems that include receiving a plurality of reflectivity measurements on a semiconductor wafer. A reflectivity map is generated based on the received plurality of reflectivity measurements. The generated reflectivity map is used to determine a process parameter of an epitaxial growth process using the reflectivity map. In an embodiment, the process parameter is a power setting (heating) of a lamp of a CVD epitaxy tool.
    Type: Application
    Filed: November 7, 2014
    Publication date: October 15, 2015
    Inventors: Chun Hsiung Tsai, Sheng-Wen Yu, De-Wei Yu
  • Publication number: 20150111359
    Abstract: An embodiment method of forming a source/drain region for a transistor includes forming a recess in a substrate, epitaxially growing a semiconductor material in the recess, amorphizing the semiconductor material, and doping the semiconductor material to form a source/drain region. In an embodiment, the doping utilizes either phosphorus or boron as the dopant. Also, the amorphizing and the doping may be performed simultaneously. The amorphizing may be performed at least in part by doping with helium.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 23, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Sheng-Wen Yu, Ziwei Fang
  • Patent number: 8927359
    Abstract: The present disclosure provides a method of semiconductor device fabrication including forming a multi-composition ILD layer by forming a first portion of an inter-layer dielectric (ILD) layer on a semiconductor substrate; and forming a second portion of an ILD layer on the first portion of the ILD layer. The second portion may have a greater silicon content than the first portion. For example, the second portion may be a silicon rich oxide.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: January 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Su-Hao Liu, Chun-Yi Chang, Ming-Feng Lin, Sheng-Wen Yu, Ziwei Fang
  • Patent number: 8883522
    Abstract: A system includes a computer-readable medium that stores a plurality of instructions for execution by at least one computer processor. The instructions include receiving a reflectivity measurement on a semiconductor wafer and generating a reflectivity map based on the received reflectivity measurement. The instructions determine a spatial distance for a selected reflectivity change using the generated reflectivity map. Subsequently, the determined spatial distance is compared with a thermal diffusion length of a first anneal process technique. In embodiments, the system further includes a light source and a reflectivity measurement tool.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: November 11, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Sheng-Wen Yu, De-Wei Yu
  • Publication number: 20140252432
    Abstract: A semiconductor device includes a substrate and a gate structure formed over the substrate. The semiconductor device further includes an insulator feature formed in the substrate. The insulator feature includes an insulating layer and a capping layer over the insulating layer.
    Type: Application
    Filed: May 15, 2013
    Publication date: September 11, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Lien Huang, Tung Ying Lee, Pei-Yi Lin, Chun-Hsiang Fan, Sheng-Wen Yu, Neng-Kuo Chen, Ming-Huan Tsai
  • Publication number: 20140233043
    Abstract: A system includes a computer-readable medium that stores a plurality of instructions for execution by at least one computer processor. The instructions include receiving a reflectivity measurement on a semiconductor wafer and generating a reflectivity map based on the received reflectivity measurement. The instructions determine a spatial distance for a selected reflectivity change using the generated reflectivity map. Subsequently, the determined spatial distance is compared with a thermal diffusion length of a first anneal process technique. In embodiments, the system further includes a light source and a reflectivity measurement tool.
    Type: Application
    Filed: April 28, 2014
    Publication date: August 21, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Sheng-Wen Yu, De-Wei Yu
  • Patent number: 8753904
    Abstract: The present disclosure provides a method and system for characterizing a pattern loading effect. A method may include performing a reflectivity measurement on a semiconductor wafer and determining an anneal process technique based on the reflectivity measurement. The determining the anneal process technique may include determining a spatial distance for a reflectivity change using a reflectivity map generated using the reflectivity measurement. This spatial distance is compared with the thermal diffusion length associated with each of the plurality of anneal process techniques. In an embodiment, a thermal profile map and/or a device performance map may be provided.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: June 17, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Sheng-Wen Yu, De-Wei Yu
  • Publication number: 20130330847
    Abstract: The present disclosure provides a method and system for characterizing a pattern loading effect. A method may include performing a reflectivity measurement on a semiconductor wafer and determining an anneal process technique based on the reflectivity measurement. The determining the anneal process technique may include determining a spatial distance for a reflectivity change using a reflectivity map generated using the reflectivity measurement. This spatial distance is compared with the thermal diffusion length associated with each of the plurality of anneal process techniques. In an embodiment, a thermal profile map and/or a device performance map may be provided.
    Type: Application
    Filed: June 7, 2012
    Publication date: December 12, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd. ("TSMC")
    Inventors: Chun Hsiung Tsai, Sheng-Wen Yu, De-Wei Yu