Patents by Inventor Shengyi Liu
Shengyi Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11495982Abstract: System and method for allocating load power drawn from multiple batteries for powering propulsion of a vehicle. The system includes: high-energy and high-power batteries respectively designed for optimal production of DC power during high-specific-energy and high-specific-power propulsion; and battery health management systems configured to monitor state of charge and state of health of the batteries and generate battery status signals. The system further includes a propulsion load configured to produce propulsion force using power converted from power generated by at least one of the batteries and a system controller configured to allocate load power drawn from the high-energy and high-power batteries for use by the propulsion load in dependence on a propulsion phase of the vehicle and the battery status.Type: GrantFiled: August 5, 2021Date of Patent: November 8, 2022Assignee: The Boeing CompanyInventors: John A. Trela, Mehdy Barekatein, Glen M. Brown, Shengyi Liu
-
Patent number: 11482360Abstract: Systems, methods, and apparatus for secondary windings to modify a permanent magnet (PM) field of a permanent magnet synchronous generator (PMSG) are disclosed. In one or more embodiments, a disclosed system for a PMSG comprises a permanent magnet (PM) of the PMSG to rotate and to generate a permanent magnet field. The system further comprises a plurality of stator primary windings (SPW), of the PMSG, to generate primary currents from the permanent magnet field. Further, the system comprises a plurality of stator secondary windings (SSW), of the PMSG, to draw secondary currents from a power source, and to generate a stator secondary winding magnetic field from the secondary currents. In one or more embodiments, the permanent magnet field and the stator secondary winding magnetic field together create an overall magnetic field for the PMSG.Type: GrantFiled: December 12, 2017Date of Patent: October 25, 2022Assignee: The Boeing CompanyInventors: Shengyi Liu, Lijun Gao
-
Patent number: 11469754Abstract: A system including a power modulation device and an active voltage balancing system is provided. The power modulation device includes first and second semiconductor switches in series. The active voltage balancing system includes a differential voltage logic configured to detect a voltage difference between the first and second semiconductor switches and edge capture logic configured to detect a time difference between when the first and second semiconductor switches are switched. The active voltage balancing system further includes a micro-controller configured to output first and second gate drive signals to drive the first and second semiconductor switches. The micro-controller is configured to tune the first and second gate drive signals based on the voltage difference to compensate for voltage imbalance and the time difference to compensate for drive signal asymmetry to actively balance a voltage between the first and second semiconductor switches.Type: GrantFiled: October 5, 2021Date of Patent: October 11, 2022Assignee: THE BOEING COMPANYInventors: Eugene V. Solodovnik, Kamiar J. Karimi, Shengyi Liu
-
Publication number: 20220294373Abstract: A system may include a variable frequency independent speed (VFIS) motor-generator. The system may further include a first power conditioner coupled to a set of stator windings of the VFIS motor-generator and a second power conditioner, distinct from the first power conditioner, coupled to a set of primary windings of a high-frequency transformer, where a set of secondary windings of the high-frequency transformer are coupled to a set of rotor windings of the VFIS motor-generator. A method may include providing a first power signal at the set of stator windings. The method may further include generating a second power signal at the second power conditioner for driving the set of rotor windings, where a shaft speed of the VFIS motor-generator is based on a difference between a first frequency of the first power signal and a second frequency of the second power signal.Type: ApplicationFiled: February 10, 2022Publication date: September 15, 2022Inventors: Lijun Gao, Shengyi Liu
-
Patent number: 11431176Abstract: A system and method for providing power to a vehicle is disclosed. The system can include a plurality of parallel module converter modules (“modules”) each capable of supplying a predetermined electrical load. The plurality of parallel module converter modules can be networked to form a parallel module converter (“converter”) for prioritizing and allocating each electrical load to one or more parallel module converter modules. Each module can include an internal protection controller and a logic controller. The individual modules can provide power to various loads in the vehicle either alone, or in concert with other modules. The system can enable fewer power controllers to be used, saving weight and time. The controllers in the system can also be utilized at a higher level reducing unnecessary redundancy.Type: GrantFiled: February 1, 2017Date of Patent: August 30, 2022Assignee: THE BOEING COMPANYInventors: Adam J. Winstanley, Eugene V. Solodovnik, Kamiar J. Karimi, Shengyi Liu, Lijun Gao, Matthew J. Krolak
-
Publication number: 20220243664Abstract: A direct drive electrically-geared turbofan is provided via a first magnetic gearbox assembly connected to a fan of a turbofan engine; a second magnetic gearbox assembly connected to a spool shaft of the turbofan engine; and a speed controller configured to adjust a rotational speed of the fan based on a rotational speed of the spool shaft by selectively coupling and decoupling the first magnetic gearbox assembly with the second magnetic gearbox assembly. In various aspects, the first or second magnetic gearbox assembly includes a permanent magnet array, while a different one of the first or second magnetic gearbox assemblies includes a rotor winding separated from the permanent magnet array by an air gap; and the speed controller is configured to selectively couple and decouple the first and second magnetic gearbox assemblies with each other via controlling a switch in a winding circuit with the rotor winding.Type: ApplicationFiled: November 24, 2021Publication date: August 4, 2022Inventors: Lijun GAO, Shengyi Liu
-
Publication number: 20220231516Abstract: A reconfigurable battery system is disclosed. The reconfigurable battery system comprises a reconfigurable battery cell array, a controller, and a bus switch. The battery cell array is configured to operate in a first discharge mode, a second discharge mode, or a charge mode. The battery cell array includes a plurality of battery cells arranged as at least a first column of battery cells between a second battery terminal and a first battery terminal and a switch between each battery cell within the first column of battery cells. The bus switch is in signal communication with the battery cell array at the first battery terminal and is configured to select between electrically connecting the first battery terminal to a normal voltage bus or a high-voltage bus.Type: ApplicationFiled: September 7, 2021Publication date: July 21, 2022Inventors: John A. Trela, Glen M. Brown, Shengyi Liu
-
Publication number: 20220212808Abstract: An electric drive system including an impedance balancing noise filtering circuit is disclosed. The electric drive system includes a direct current (DC) power source configured to output DC power to an output port and an inverter configured to convert the DC power output by the DC power source into alternating current (AC) power that is provided to an input port of an AC load. The impedance balancing noise filtering circuit includes an impedance bridge electrically intermediate the output port of the DC power source and the input port of the AC load. The impedance balancing noise filtering circuit includes different sets of passive components that are positioned on both the DC-side and the AC-side of the inverter. These sets of passive components are configured to facilitate impedance balancing that reduces common-mode (CM) electromagnetic interference (EMI) emission at the output port of the DC power source.Type: ApplicationFiled: October 5, 2021Publication date: July 7, 2022Inventors: Eugene V. Solodovnik, Kamiar J. Karimi, Shengyi Liu
-
Publication number: 20220216865Abstract: A system including a power modulation device and an active voltage balancing system is provided. The power modulation device includes first and second semiconductor switches in series. The active voltage balancing system includes a differential voltage logic configured to detect a voltage difference between the first and second semiconductor switches and edge capture logic configured to detect a time difference between when the first and second semiconductor switches are switched. The active voltage balancing system further includes a micro-controller configured to output first and second gate drive signals to drive the first and second semiconductor switches. The micro-controller is configured to tune the first and second gate drive signals based on the voltage difference to compensate for voltage imbalance and the time difference to compensate for drive signal asymmetry to actively balance a voltage between the first and second semiconductor switches.Type: ApplicationFiled: October 5, 2021Publication date: July 7, 2022Inventors: Eugene V. Solodovnik, Kamiar J. Karimi, Shengyi Liu
-
Publication number: 20220196756Abstract: A battery management system (BMS) for early detection of a battery cell internal short-circuit is disclosed. The BMS comprises a memory, one or more processing units, and a machine-readable medium on the memory. The machine-readable medium stores instructions that, when executed by the one or more processing units, cause the BMS to perform numerous operations of a method for early detection of the battery cell internal short-circuit.Type: ApplicationFiled: July 12, 2021Publication date: June 23, 2022Inventor: Shengyi Liu
-
Patent number: 11362567Abstract: Electrical power generation in turbine engines in provided by a permanent magnet that emits a first magnetic field and is disposed on a first rotor assembly of a turbine engine; an armature winding connected to a second rotor assembly of the turbine engine such that the armature winding is positioned within the first magnetic field; a resonant emitter configured to receive an electrical power input from the armature winding to generate a second magnetic field of at least a predefined frequency when the first rotor assembly rotates relative to the second rotor assembly; and a resonant receiver disposed on an enclosure of the turbine engine, positioned to receive the second magnetic field and convert the second magnetic field into an electrical power output.Type: GrantFiled: January 16, 2020Date of Patent: June 14, 2022Assignee: THE BOEING COMPANYInventor: Shengyi Liu
-
Publication number: 20220162996Abstract: The present disclosure provides an electrically gear turbofan that includes a fan; a first spool shaft; and an electrical gearbox including: an armature winding connected to the first spool shaft and coupled to a power source; and a magnetic receiver connected to the fan, and wherein an air gap is defined between the armature winding and the magnetic receiver. The turbines and electrical gearing enable an operator to rotate the spool shaft at a first rotational speed; power an armature winding to generate an armature magnetic field, wherein the armature magnetic field rotates at a second rotational speed; transfer rotational energy via the armature magnetic field from the spool shaft to the magnetic receiver; and rotate the fan at a third rotational speed. In some aspects, the third rotational speed is controlled via a direction and a magnitude of the second rotational speed relative to the first rotational speed.Type: ApplicationFiled: December 6, 2021Publication date: May 26, 2022Inventor: Shengyi LIU
-
Publication number: 20220069605Abstract: System and method for allocating load power drawn from multiple batteries for powering propulsion of a vehicle. The system includes: high-energy and high-power batteries respectively designed for optimal production of DC power during high-specific-energy and high-specific-power propulsion; and battery health management systems configured to monitor state of charge and state of health of the batteries and generate battery status signals. The system further includes a propulsion load configured to produce propulsion force using power converted from power generated by at least one of the batteries and a system controller configured to allocate load power drawn from the high-energy and high-power batteries for use by the propulsion load in dependence on a propulsion phase of the vehicle and the battery status.Type: ApplicationFiled: August 5, 2021Publication date: March 3, 2022Applicant: The Boeing CompanyInventors: John A. Trela, Mehdy Barekatein, Glen M. Brown, Shengyi Liu
-
Patent number: 11193426Abstract: The present disclosure provides an electrically gear turbofan that includes a fan; a first spool shaft; and an electrical gearbox including: an armature winding connected to the first spool shaft and coupled to a power source; and a magnetic receiver connected to the fan, and wherein an air gap is defined between the armature winding and the magnetic receiver. The turbines and electrical gearing enable an operator to rotate the spool shaft at a first rotational speed; power an armature winding to generate an armature magnetic field, wherein the armature magnetic field rotates at a second rotational speed; transfer rotational energy via the armature magnetic field from the spool shaft to the magnetic receiver; and rotate the fan at a third rotational speed. In some aspects, the third rotational speed is controlled via a direction and a magnitude of the second rotational speed relative to the first rotational speed.Type: GrantFiled: April 16, 2020Date of Patent: December 7, 2021Assignee: THE BOEING COMPANYInventor: Shengyi Liu
-
Publication number: 20210324804Abstract: The present disclosure provides an electrically gear turbofan that includes a fan; a first spool shaft; and an electrical gearbox including: an armature winding connected to the first spool shaft and coupled to a power source; and a magnetic receiver connected to the fan, and wherein an air gap is defined between the armature winding and the magnetic receiver. The turbines and electrical gearing enable an operator to rotate the spool shaft at a first rotational speed; power an armature winding to generate an armature magnetic field, wherein the armature magnetic field rotates at a second rotational speed; transfer rotational energy via the armature magnetic field from the spool shaft to the magnetic receiver; and rotate the fan at a third rotational speed. In some aspects, the third rotational speed is controlled via a direction and a magnitude of the second rotational speed relative to the first rotational speed.Type: ApplicationFiled: April 16, 2020Publication date: October 21, 2021Inventor: Shengyi Liu
-
Patent number: 11146200Abstract: A system for controlling a motor may include an alternating current (AC) bus configured to transmit an AC power signal to a set of stator windings, where the AC power signal produces a first rotating magnetic flux at the set of stator windings. The system may also include a high frequency contactless transformer configured to transmit an excitation signal to a set of rotor windings, where the excitation signal produces a second rotating magnetic flux at the rotor. The system may also include electrical circuitry configured to determine a rotor voltage and a rotor current associated with the excitation signal, determine a rotor flux magnitude estimate and a rotor flux angle estimate based on the rotor voltage and the rotor current, and determine an inverter control signal operable to generate the excitation signal based at least partially on the rotor flux magnitude estimate and the rotor flux angle estimate.Type: GrantFiled: March 10, 2020Date of Patent: October 12, 2021Assignee: THE BOEING COMPANYInventors: Lijun Gao, Shengyi Liu
-
Patent number: 11128212Abstract: Systems and methods for current ripple reduction for a direct current (DC) source powering an alternating current (AC) load. In accordance with one embodiment, the system and method involve interleaved operation of a 3×3-phase AC motor having multiple groups of windings. In accordance with another embodiment, the system and method involve interleaved operation of multiple co-shafted 3-phase AC motors. In accordance with a further embodiment, the system and method involve interleaved operation multiple 3-phase AC motors (not co-shafted) of the same level of power. The interleaved operation entails interleaved switching inside a set of inverters which are connected in parallel between a DC bus and the windings of the AC motor (motors).Type: GrantFiled: March 2, 2020Date of Patent: September 21, 2021Assignee: The Boeing CompanyInventors: Shengyi Liu, Eugene V. Solodovnik, Frederic Lacaux, Kamiar J. Karimi
-
Publication number: 20210288603Abstract: A system for controlling a motor may include an alternating current (AC) bus configured to transmit an AC power signal to a set of stator windings, where the AC power signal produces a first rotating magnetic flux at the set of stator windings. The system may also include a high frequency contactless transformer configured to transmit an excitation signal to a set of rotor windings, where the excitation signal produces a second rotating magnetic flux at the rotor. The system may also include electrical circuitry configured to determine a rotor voltage and a rotor current associated with the excitation signal, determine a rotor flux magnitude estimate and a rotor flux angle estimate based on the rotor voltage and the rotor current, and determine an inverter control signal operable to generate the excitation signal based at least partially on the rotor flux magnitude estimate and the rotor flux angle estimate.Type: ApplicationFiled: March 10, 2020Publication date: September 16, 2021Inventors: Lijun Gao, Shengyi Liu
-
Patent number: 11110811Abstract: A hybrid electric propulsion system may include an independent speed variable frequency (ISVF) generator coupled to an alternating current (AC) bus via a first switch. The system may further include a variable frequency independent speed (VFIS) motor coupled to the AC bus via a second switch, the system omitting circuitry to perform a full-power rated power conversion between the ISVF generator and the VFIS motor. The system may also include an alternating current direct current (AC/DC) converter coupled to the AC bus via a third switch. The system may include a battery coupled to the AC/DC converter.Type: GrantFiled: December 10, 2018Date of Patent: September 7, 2021Assignee: THE BOEING COMPANYInventors: Lijun Gao, Shengyi Liu
-
Publication number: 20210273554Abstract: Systems and methods for current ripple reduction for a direct current (DC) source powering an alternating current (AC) load. In accordance with one embodiment, the system and method involve interleaved operation of a 3×3-phase AC motor having multiple groups of windings. In accordance with another embodiment, the system and method involve interleaved operation of multiple co-shafted 3-phase AC motors. In accordance with a further embodiment, the system and method involve interleaved operation multiple 3-phase AC motors (not co-shafted) of the same level of power. The interleaved operation entails interleaved switching inside a set of inverters which are connected in parallel between a DC bus and the windings of the AC motor (motors).Type: ApplicationFiled: March 2, 2020Publication date: September 2, 2021Applicant: The Boeing CompanyInventors: Shengyi Liu, Eugene V. Solodovnik, Frederic Lacaux, Kamiar J. Karimi