Patents by Inventor Shengzhong Liu

Shengzhong Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11008648
    Abstract: Disclosed is a CuO/Se composite film, in which Se with low melting point (221° C.) and strong photosensitivity is introduced into CuO, providing the film with fewer defects and excellent optical, electrical and photoelectric properties. In the preparation method of the invention, Se is introduced into CuO and melted by low-temperature annealing, and then the molten Se can infiltrate CuO to eliminate or reduce defects in the CuO film such as voids and dangling bonds, thereby improving optical, electrical and photoelectric properties of the film and overcoming the shortcomings that CuO has poor crystallinity, high melting point and is decomposed at a high temperature.
    Type: Grant
    Filed: December 28, 2019
    Date of Patent: May 18, 2021
    Assignee: Shaanxi Normal University
    Inventors: Fei Gao, Rongrong Gao, Hao Liu, Shengzhong Liu
  • Publication number: 20200308691
    Abstract: Disclosed is a CuO/Se composite film, in which Se with low melting point (221° C.) and strong photosensitivity is introduced into CuO, providing the film with fewer defects and excellent optical, electrical and photoelectric properties. In the preparation method of the invention, Se is introduced into CuO and melted by low-temperature annealing, and then the molten Se can infiltrate CuO to eliminate or reduce defects in the CuO film such as voids and dangling bonds, thereby improving optical, electrical and photoelectric properties of the film and overcoming the shortcomings that CuO has poor crystallinity, high melting point and is decomposed at a high temperature.
    Type: Application
    Filed: December 28, 2019
    Publication date: October 1, 2020
    Inventors: Fei GAO, Rongrong GAO, Hao LIU, Shengzhong LIU
  • Patent number: 8168881
    Abstract: A photovoltaic module comprised of a plurality of series connected photovoltaic cells disposed upon a substrate is fabricated utilizing thin film device techniques. A body of photovoltaic stock material comprised of an electrically conductive substrate having at least a bottom electrode layer, a body of photovoltaic material, and a top electrode layer supported thereupon is patterned so as to define a number of individual, electrically isolated photovoltaic cells and a number of electrically isolated connection zones. The connection zones are patterned to each include a portion of the bottom electrode material and are configured so that the bottom electrode material in each segment of the connection zone is exposed, and is in electrical communication with the bottom electrode portion of a particular cell.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: May 1, 2012
    Assignee: United Solar Ovonic LLC
    Inventors: Kevin Beernink, Shengzhong Liu
  • Patent number: 7964476
    Abstract: A system for the laser scribing of semiconductor devices includes a laser light source operable to selectably deliver laser illumination at a first wavelength and at a second wavelength which is shorter than the first wavelength. The system further includes a support for a semiconductor device and an optical system which is operative to direct the laser illumination from the light source to the semiconductor device. The optical system includes optical elements which are compatible with the laser illumination of the first wavelength and the laser illumination of the second wavelength. In specific instances, the first wavelength is long wavelength illumination such as illumination of at least 1000 nanometers, and the second wavelength is short wavelength illumination which in specific instances is 300 nanometers or shorter. By the use of the differing wavelengths, specific layers of the semiconductor device may be scribed without damage to subjacent layers. Also disclosed are specific scribing processes.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: June 21, 2011
    Assignee: United Solar Ovonic LLC
    Inventors: Shengzhong Liu, Ginger Pietka, Kevin Beernink, Arindam Banerjee, Chi Yang, Subhendu Guha
  • Publication number: 20100200411
    Abstract: A metal and oxygen material such as a transparent electrically conductive oxide material is electro deposited onto a substrate in a solution deposition process. Process parameters are controlled so as to result in the deposition of a high quality layer of material which is suitable for use in a back reflector structure of a high efficiency photovoltaic device The deposition may be carried out in conjunction with a masking member which operates to restrict the deposition of the metal and oxygen material to specific portions of the substrate. In particular instances the deposition may be implemented in a continuous, roll-to-roll process. Further disclosed are semiconductor devices and components of semiconductor devices made by the present process, as well as apparatus for carrying out the process.
    Type: Application
    Filed: February 11, 2009
    Publication date: August 12, 2010
    Applicant: United Solar Ovonic LLC
    Inventors: Shengzhong Liu, Chaolan Hu, Yanhua Zhou, Arindam Banerjee, Jeffrey Yang, Subhendu Guha
  • Publication number: 20100200409
    Abstract: A metal and oxygen material such as a transparent electrically conductive oxide material is electro deposited onto a substrate in a solution deposition process. Process parameters are controlled so as to result in the deposition of a high quality layer of material which is suitable for use in a back reflector structure of a high efficiency photovoltaic device. The deposition may be carried out in conjunction with a masking member which operates to restrict the deposition of the metal and oxygen material to specific portions of the substrate. In particular instances the deposition may be implemented in a continuous, roll-to-roll process. Further disclosed are semiconductor devices and components of semiconductor devices made by the present process, as well as apparatus for carrying out the process.
    Type: Application
    Filed: February 11, 2009
    Publication date: August 12, 2010
    Applicant: United Solar Ovonic LLC
    Inventors: Shengzhong Liu, Chaolan Hu, Yanhua Zhou, Kais Younan, Bud Dotter, II, Vincent Cannella, Arindam Banerjee, Jeffrey Yang, Subhendu Guha
  • Publication number: 20100200408
    Abstract: A metal and oxygen material such as a transparent electrically conductive oxide material is electro deposited onto a substrate in a solution deposition process. Process parameters are controlled so as to result in the deposition of a high quality layer of material which is suitable for use in a back reflector structure of a high efficiency photovoltaic device. The deposition may be carried out in conjunction with a masking member which operates to restrict the deposition of the metal and oxygen material to specific portions of the substrate. In particular instances the deposition may be implemented in a continuous, roll-to-roll process. Further disclosed are semiconductor devices and components of semiconductor devices made by the present process, as well as apparatus for carrying out the process.
    Type: Application
    Filed: February 11, 2009
    Publication date: August 12, 2010
    Applicant: United Solar Ovonic LLC
    Inventors: Shengzhong Liu, Chaolan Hu, Yanhua Zhou, Kais Younan, Bud Dotter, II, Vincent Cannella, Arindam Banerjee, Jeffrey Yang, Subhendu Guha
  • Publication number: 20100200067
    Abstract: A metal and oxygen material such as a transparent electrically conductive oxide material is electro deposited onto a substrate in a solution deposition process. Process parameters are controlled so as to result in the deposition of a high quality layer of material which is suitable for use in a back reflector structure of a high efficiency photovoltaic device. The deposition may be carried out in conjunction with a masking member which operates to restrict the deposition of the metal and oxygen material to specific portions of the substrate. In particular instances the deposition may be implemented in a continuous, roll-to-roll process. Further disclosed are semiconductor devices and components of semiconductor devices made by the present process, as well as apparatus for carrying out the process.
    Type: Application
    Filed: February 11, 2009
    Publication date: August 12, 2010
    Applicant: United Solar Ovonic LLC
    Inventors: Shengzhong Liu, Yanhua Zhou, Chaolan Hu, Arindam Banerjee, Jeffrey Yang, Subhendu Guha
  • Publication number: 20100200413
    Abstract: A metal and oxygen material such as a transparent electrically conductive oxide material is electro deposited onto a substrate in a solution deposition process. Process parameters are controlled so as to result in the deposition of a high quality layer of material which is suitable for use in a back reflector structure of a high efficiency photovoltaic device. The deposition may be carried out in conjunction with a masking member which operates to restrict the deposition of the metal and oxygen material to specific portions of the substrate. In particular instances the deposition may be implemented in a continuous, roll-to-roll process. Further disclosed are semiconductor devices and components of semiconductor devices made by the present process, as well as apparatus for carrying out the process.
    Type: Application
    Filed: February 11, 2009
    Publication date: August 12, 2010
    Applicant: United Solar Ovonic LLC
    Inventors: Shengzhong Liu, Chaolan Hu, Yanhua Zhou, Arindam Banerjee, Jeffrey Yang, Subhendu Guha
  • Publication number: 20100200060
    Abstract: A high quality, highly adherent layer of a metal and oxygen material such as a transparent electrically conductive oxide material is electro deposited onto a substrate in a solution deposition process. The substrate is activated prior to the electro deposition of the metal and oxygen material thereonto by contacting it with a multidentate activating agent which promotes the adhesion of the metal and oxygen material to the substrate. Use of the activation agent eliminates the need to pre-deposit a “seed” layer of the metal and oxygen material onto the substrate by a vacuum deposition process. Process parameters are controlled so as to result in the deposition of a high quality layer of material which is suitable for use in a back reflector structure of a high efficiency photovoltaic device In particular instances the activation method may be implemented in a continuous, roll-to-roll process.
    Type: Application
    Filed: February 19, 2010
    Publication date: August 12, 2010
    Applicant: United Solar Ovonic LLC
    Inventor: Shengzhong LIU
  • Publication number: 20100059098
    Abstract: A photovoltaic module comprised of a plurality of series connected photovoltaic cells disposed upon a substrate is fabricated utilizing thin film device techniques. A body of photovoltaic stock material comprised of an electrically conductive substrate having at least a bottom electrode layer, a body of photovoltaic material, and a top electrode layer supported thereupon is patterned so as to define a number of individual, electrically isolated photovoltaic cells and a number of electrically isolated connection zones. The connection zones are patterned to each include a portion of the bottom electrode material and are configured so that the bottom electrode material in each segment of the connection zone is exposed, and is in electrical communication with the bottom electrode portion of a particular cell.
    Type: Application
    Filed: September 9, 2008
    Publication date: March 11, 2010
    Inventors: Kevin Beernink, Shengzhong Liu
  • Publication number: 20090029053
    Abstract: Darkening of silicone containing materials caused by exposure to ultraviolet illumination is prevented or reversed by exposure of those materials to an atmosphere containing a reactive species, which may comprise activated oxygen. The activated oxygen may be generated by ultraviolet irradiation of the silicone material in an oxygen containing atmosphere. In other instances, the activated oxygen may comprise ozone or some other activated oxygen species. In yet other instances, the reactive species may comprise an oxygen containing material such as nitrous oxide or nitrates. It may also comprise other materials such as halogens, atomic hydrogen, protons or the like. The treatment may be applied prior to ultraviolet exposure so as to prevent or minimize darkening, or it may be applied after darkening has occurred for purposes of reversing the darkening.
    Type: Application
    Filed: July 25, 2007
    Publication date: January 29, 2009
    Applicant: United Solar Ovonic LLC
    Inventors: Shengzhong Liu, Arindam Banerjee, Chi Yang, Subhendu Guha
  • Publication number: 20080233715
    Abstract: A system for the laser scribing of semiconductor devices includes a laser light source operable to selectably deliver laser illumination at a first wavelength and at a second wavelength which is shorter than the first wavelength. The system further includes a support for a semiconductor device and an optical system which is operative to direct the laser illumination from the light source to the semiconductor device. The optical system includes optical elements which are compatible with the laser illumination of the first wavelength and the laser illumination of the second wavelength. In specific instances, the first wavelength is long wavelength illumination such as illumination of at least 1000 nanometers, and the second wavelength is short wavelength illumination which in specific instances is 300 nanometers or shorter. By the use of the differing wavelengths, specific layers of the semiconductor device may be scribed without damage to subjacent layers. Also disclosed are specific scribing processes.
    Type: Application
    Filed: March 24, 2008
    Publication date: September 25, 2008
    Inventors: Shengzhong Liu, Ginger Pietka, Kevin Beernink, Arindam Banerjee, Chi Yang, Subhendu Guha
  • Publication number: 20080105303
    Abstract: A method for manufacturing a thin film photovoltaic module comprising series connected cells, the cells comprising a front contact, a back contact and a photovoltaically active region positioned between the front and back contacts, the series connected cell being formed by scribing a front contact layer, a photovoltaically active layer and a back contact layer on a substrate, the method comprising laser scribing at least one of the front contact layer, the photovoltaically active layer or the back contact layer to form laser scribes using a laser beam scanned rapidly over the layer.
    Type: Application
    Filed: August 8, 2007
    Publication date: May 8, 2008
    Applicant: BP Corporation North America Inc.
    Inventors: Robert Oswald, Shengzhong Liu
  • Patent number: 7259321
    Abstract: A method for manufacturing a thin film photovoltaic module comprising series connected cells, the cells comprising a front contact, a back contact and a photovoltaically active region positioned between the front and back contacts, the series connected cell being formed by scribing a front contact layer, a photovoltaically active layer and a back contact layer on a substrate, the method comprising laser scribing at least one of the front contact layer, the photovoltaically active layer or the back contact layer to form laser scribes using a laser beam scanned rapidly over the layer.
    Type: Grant
    Filed: January 3, 2003
    Date of Patent: August 21, 2007
    Assignee: BP Corporation North America Inc.
    Inventors: Robert S. Oswald, Shengzhong Liu
  • Publication number: 20060205184
    Abstract: A photovoltaic cell comprising a supporting substrate, a front contact layer on the substrate, a layer or layers of semiconductor material and a back contact layer comprising a metal, the back contact having areas without metal thereby permitting the passage of light through the cell.
    Type: Application
    Filed: April 27, 2006
    Publication date: September 14, 2006
    Inventors: Robert Oswald, Shengzhong Liu
  • Publication number: 20050148109
    Abstract: A photovoltaic cell comprising a supporting substrate, a front contact layer on the substrate, a layer or layers of semiconductor material and a back contact layer comprising a metal, the back contact having areas without metal thereby permitting the passage of light through the cell.
    Type: Application
    Filed: February 28, 2005
    Publication date: July 7, 2005
    Inventors: Robert Oswald, Shengzhong Liu
  • Patent number: 6858461
    Abstract: A photovoltaic cell comprising a supporting substrate, a front contact layer on the substrate, a layer or layers of semiconductor material and a back contact layer comprising a metal, the back contact having areas without metal thereby permitting the passage of light through the cell.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: February 22, 2005
    Assignee: BP Corporation North America Inc.
    Inventors: Robert S. Oswald, Shengzhong Liu
  • Publication number: 20040219801
    Abstract: A photovoltaic cell comprising a supporting substrate, a front contact layer on the substrate, a layer or layers of semiconductor material and a back contact layer comprising a metal, the back contact having areas without metal thereby permitting the passage of light through the cell.
    Type: Application
    Filed: December 2, 2003
    Publication date: November 4, 2004
    Inventors: Robert S. Oswald, Shengzhong Liu
  • Publication number: 20030180983
    Abstract: A method for manufacturing a thin film photovoltaic module comprising series connected cells, the cells comprising a front contact, a back contact and a photovoltaically active region positioned between the front and back contacts, the series connected cell being formed by scribing a front contact layer, a photovoltaically active layer and a back contact layer on a substrate, the method comprising laser scribing at least one of the front contact layer, the photovoltaically active layer or the back contact layer to form laser scribes using a laser beam scanned rapidly over the layer.
    Type: Application
    Filed: January 3, 2003
    Publication date: September 25, 2003
    Inventors: Robert S. Oswald, Shengzhong Liu