Patents by Inventor ShenJian Qian

ShenJian Qian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11762480
    Abstract: A key determination method for a metal key. The method comprises a step of determining whether values output by an electrical parameter converter on a metal key satisfy multiple levels of thresholds, and, a step of setting a press flag of the metal key according to multiple levels of thresholds; and after the metal key is released, determining whether a release flag is valid according to a press model, and if so, clearing the press flag that was previously set. Different press models and different thresholds are selected and configured by means of software, so that personalized choices are provided for respective metal keys, which effectively facilitates different operators in configuring a metal keyboard according to usage habits, thereby improving the operating efficiency. In addition, the setting of different thresholds effectively protects the operational details mean for the exclusive use of operators, thereby achieving the required confidentiality.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: September 19, 2023
    Assignees: Mettler-Toledo (Changzhou) Measurement Technology Ltd., Mettler-Toledo (Changzhou) Precision Instruments Ltd., Mettler-Toledo International Trading (Shanghai) Co., Ltd.
    Inventors: Jingke Wang, Shujun Wang, Shenjian Qian, Yong Yang
  • Patent number: 11669147
    Abstract: A method for dynamically managing power consumption, as well as a wake-up method, is disclosed for a wireless weighing platform. The method is initialized by setting both light and deep sleep period, entering a normal operating state, and starting light sleep timing. As long as no weighing operation is detected and the light sleep period has not expired, the method seeks to detect the weighing operation. If the light sleep period expires with no weighing operation, a light sleep state is entered, by turning off a communication function and starting timing for the deep sleep period. If no weighing is when the deep sleep period has expired, the wireless weighing platform enters a deep sleep state, by turning off power supply other than that for an acceleration sensor. If the acceleration sensor detects an effective vibration while in the deep sleep state, the normal operating state is restarted.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: June 6, 2023
    Assignees: Mettler-Toledo (Changzhou) Measurement Technology Co., Ltd., Mettler-Toledo (Changzhou) Precision Instruments Co., Ltd., Mettler-Toledo International Trading (Shanghai) Co., Ltd.
    Inventors: ShenJian Qian, Bo Shen, Jianke Liu, Yong Yang
  • Publication number: 20230033782
    Abstract: A key determination method for a metal key. The method comprises a step of determining whether values output by an electrical parameter converter on a metal key satisfy multiple levels of thresholds, and, a step of setting a press flag of the metal key according to multiple levels of thresholds; and after the metal key is released, determining whether a release flag is valid according to a press model, and if so, clearing the press flag that was previously set. Different press models and different thresholds are selected and configured by means of software, so that personalized choices are provided for respective metal keys, which effectively facilitates different operators in configuring a metal keyboard according to usage habits, thereby improving the operating efficiency. In addition, the setting of different thresholds effectively protects the operational details mean for the exclusive use of operators, thereby achieving the required confidentiality.
    Type: Application
    Filed: December 29, 2020
    Publication date: February 2, 2023
    Inventors: Jingke Wang, Shujun Wang, Shenjian Qian, Yong Yang
  • Publication number: 20220268622
    Abstract: A hysteresis compensation method, in which a hysteresis error is calculated for an obtained weighing value by means of an ideal hysteresis error model, and an ideal compensation value is further calculated by means of an ideal hysteresis compensation model, wherein by using a proportional relationship between a system hysteresis error model established in hysteresis calibration and the ideal hysteresis error model, the ideal compensation value is corrected to a final compensation value. The method establishes a mapping relationship between the system's own hysteresis compensation and the ideal state hysteresis compensation, and realizes the transformation of a complicated hysteresis error compensation situation into an ideal hysteresis error compensation situation. The method not only has a good compensation effect for the hysteresis error compensation under ideal situations, but also can obtain an excellent hysteresis compensation effect under complicated hysteresis situations.
    Type: Application
    Filed: July 29, 2020
    Publication date: August 25, 2022
    Inventors: Song Zhang, Shenhui Wang, Shenjian Qian, Qin Sun
  • Publication number: 20220252448
    Abstract: A weighing method comprises the steps of: recognizing one or more objects to be detected on a first scale platform top (A) or within an object recognition area of the first scale platform top (A), and weighing the objects to be detected that are placed on a second scale platform top (B). A weighing system comprises at least two scales having scale platform tops utilizing the weighing method outlined above. The weighing method reduces the difficulty of algorithm recognition by increasing the degree to which the object on the weighting platform fits the algorithm, reduces the complexity of operation flow and the time required, and effectively increases the precision and accuracy of object recognition.
    Type: Application
    Filed: July 29, 2020
    Publication date: August 11, 2022
    Inventors: Song Zhang, Shenhui Wang, Shenjian Qian, Jindong Cui, Gang Yang
  • Publication number: 20200089309
    Abstract: A method for dynamically managing power consumption, as well as a wake-up method, is disclosed for a wireless weighing platform. The method is initialized by setting both light and deep sleep period, entering a normal operating state, and starting light sleep timing. As long as no weighing operation is detected and the light sleep period has not expired, the method seeks to detect the weighing operation. If the light sleep period expires with no weighing operation, a light sleep state is entered, by turning off a communication function and starting timing for the deep sleep period. If no weighing is when the deep sleep period has expired, the wireless weighing platform enters a deep sleep state, by turning off power supply other than that for an acceleration sensor. If the acceleration sensor detects an effective vibration while in the deep sleep state, the normal operating state is restarted.
    Type: Application
    Filed: September 16, 2019
    Publication date: March 19, 2020
    Inventors: ShenJian Qian, Bo Shen, Jianke Liu, Yong Yang