Patents by Inventor Shenzhen Sunxing Light Alloys Materials Co., Ltd.

Shenzhen Sunxing Light Alloys Materials Co., Ltd. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130115370
    Abstract: The disclosure provides a process for preparing an inert anode material or inert cathode coating material for aluminium electrolysis, which includes the following steps: A) putting aluminium into a reactor, injecting an inert gas to the reactor after vacuumizing, adding the mixture of dried fluoborate and fluorotitanate in the reactor to enable a reaction to form titanium boride and cryolite, and isolating the titanium boride; and B) melting the obtained titanium boride with a carbon material, tamping the melt liquid on a carbon cathode surface, sintering the carbon cathode surface to form the inert cathode coating material for aluminium electrolysis; or, mixing the obtained titanium boride with the carbon material evenly, then high-pressure moulding the mixture, and finally sintering the moulded mixture at a high temperature to form the inert anode material for aluminium electrolysis.
    Type: Application
    Filed: December 9, 2012
    Publication date: May 9, 2013
    Applicant: SHENZHEN SUNXING LIGHT ALLOYS MATERIALS CO.,LTD
    Inventor: Shenzhen Sunxing Light Alloys Materials Co., Ltd.
  • Publication number: 20130112570
    Abstract: The invention provides a sodium cryolite for aluminum electrolysis industry, which has a molecular formula: mNaF.AlF3, wherein m is from 1 to 1.5. The low-molecular-ratio sodium cryolite (mNaF.AlF3, and m is from 1 to 1.5) provided by the invention is used for aluminum electrolysis industry, and can reduce the temperature of electrolysis and the consumption of power, raise the efficiency of electrolysis and lower the comprehensive production cost.
    Type: Application
    Filed: December 9, 2012
    Publication date: May 9, 2013
    Applicant: SHENZHEN SUNXING LIGHT ALLOYS MATERIALS CO.,LTD
    Inventor: Shenzhen Sunxing Light Alloys Materials Co., Ltd.
  • Publication number: 20130098207
    Abstract: A method for cyclically preparing titanium sponge and coproducing potassium cryolite using potassium fluotitanate as an intermediate material, which includes the following steps: A) adding hydrofluoric acid to titaniferous iron concentrate to enable a reaction to form fluotitanic acid; B) adding potassium sulphate to the fluotitanic acid to enable a reaction to form the potassium fluotitanate; C) putting the potassium fluotitanate into a reactor, adding aluminium to react with the potassium fluotitanate to form the titanium sponge and potassium cryolite; D) extracting the potassium cryolite and sending it to a rotary reaction kettle together with concentrated sulphuric acid to enable a reaction to form hydrogen fluoride gas and potassium sulphate, aluminium potassium sulphate; collecting the hydrogen fluoride gas and dissolving it into water to obtain a hydrofluoric acid aqueous solution; E) recycling the obtained hydrofluoric acid aqueous solution to Step A to leach the titaniferous iron concentrate.
    Type: Application
    Filed: December 8, 2012
    Publication date: April 25, 2013
    Applicant: SHENZHEN SUNXING LIGHT ALLOYS MATERIALS CO.,LTD
    Inventor: SHENZHEN SUNXING LIGHT ALLOYS MATERIALS CO.,LTD
  • Publication number: 20130095023
    Abstract: A method for cyclically preparing monomer boron and coproducing potassium cryolite using potassium fluoborate as an intermediate material, which includes following steps: A) adding hydrofluoric acid to boric acid or boron oxide to enable a reaction to form fluoboric acid; B) adding a potassium sulphate aqueous solution to the fluoboric acid to enable a reaction to form the potassium fluoborate; C) putting the potassium fluoborate into a reactor, adding aluminium to react with the potassium fluoborate to form the monomer boron and potassium cryolite; D) extracting the potassium cryolite, sending the potassium cryolite to a rotary reaction kettle together with concentrated sulphuric acid to enable a reaction to form hydrogen fluoride gas and aluminium potassium sulphate, potassium sulphate, collecting the hydrogen fluoride gas and dissolving it into water to obtain the hydrofluoric acid; E) recycling the obtained hydrofluoric acid to Step A to leach the boric acid or boron oxide.
    Type: Application
    Filed: December 8, 2012
    Publication date: April 18, 2013
    Applicant: SHENZHEN SUNXING LIGHT ALLOYS MATERIALS CO.,LTD
    Inventor: Shenzhen Sunxing Light Alloys Materials Co., Ltd
  • Publication number: 20130092551
    Abstract: The disclosure provides an electrolyte supplement system in an aluminium electrolysis process, which includes low-molecular-ratio cryolite, wherein the low-molecular-ratio cryolite is selected from mKF.AlF3, nNaF.AlF3 or mixture thereof, where m=1˜1.5 and n=1˜1.5. When the electrolyte supplement system provided by the disclosure is applied to the aluminium electrolytic industry, electrolytic temperature can be reduced obviously in the aluminium electrolysis process without changing the existing electrolytic process; thus, power consumption is reduced, volatilization loss of fluoride is reduced and the comprehensive cost of production is reduced.
    Type: Application
    Filed: December 9, 2012
    Publication date: April 18, 2013
    Applicant: SHENZHEN SUNXING LIGHT ALLOYS MATERIALS CO.,LTD
    Inventor: Shenzhen Sunxing Light Alloys Materials Co., Ltd.
  • Publication number: 20130095021
    Abstract: A cyclic preparation method including the following steps: a) boric acid or boric anhydride is added with hydrofluoric acid and then with potassium sulfate for reaction to generate potassium fluoborate; titanium-iron concentrate is added with hydrofluoric acid and then with potassium sulfate for reaction to generate potassium fluotitanate; B) the potassium fluoborate is mixed with the potassium fluotitanate, and the mixture reacts with aluminum to generate titanium boride and potassium cryolite; C) the potassium cryolite is sucked out and then fed into a rotary reaction kettle together with concentrated sulfuric acid, hydrogen fluoride gas as well as potassium sulfate and potassium aluminum sulfate are generated by reaction in the rotary reaction kettle, and the hydrogen fluoride gas is collected and then dissolved in water to obtain hydrofluoric acid aqueous solution; and D) the obtained hydrofluoric acid aqueous solution and potassium sulfate aqueous solution are recycled.
    Type: Application
    Filed: December 9, 2012
    Publication date: April 18, 2013
    Applicant: SHENZHEN SUNXING LIGHT ALLOYS MATERIALS CO.,LTD
    Inventor: Shenzhen Sunxing Light Alloys Materials Co., Ltd.
  • Publication number: 20130095020
    Abstract: A cyclic preparation method for producing titanium boride from intermediate feedstock sodium-based titanium-boron-fluorine salt mixture and producing sodium cryolite as byproduct, which comprises the steps: a) boric acid or boric anhydride is added with hydrofluoric acid and then with sodium carbonate solution for concentration and crystallization to generate sodium fluoborate; titanium-iron concentrate is added with hydrofluoric acid and then with sodium carbonate and sodium hydroxide to obtain sodium fluotitanate; B) the sodium fluoborate is mixed with the sodium fluotitanate, and the mixture reacts with aluminum to generate titanium boride and sodium cryolite; C) the sodium cryolite is sucked out and then fed into a rotary reaction kettle together with concentrated sulfuric acid, hydrogen fluoride gas as well as sodium sulfate and sodium aluminum sulfate are generated by reaction in the rotary reaction kettle, and the hydrogen fluoride gas is collected and then dissolved in water to obtain hydrofluoric aci
    Type: Application
    Filed: December 8, 2012
    Publication date: April 18, 2013
    Applicant: SHENZHEN SUNXING LIGHT ALLOYS MATERIALS CO.,LTD
    Inventor: Shenzhen Sunxing Light Alloys Materials Co.,Ltd
  • Publication number: 20130091988
    Abstract: The invention provides a preparation method for producing metal zirconium industrially and producing low-temperature aluminum electrolyte as byproduct, which comprises the following steps: A) aluminum and fluorozirconate are put in a closed reactor, inert gas is fed into the reactor after evacuation, the reactor is heated up to 780° C. to 1000° C. and then the mixture in the reactor is stirred rapidly; and B) after reaction continues for 4 to 6 hours, the liquid molten at the upper layer is sucked out to obtain low-temperature aluminum electrolyte, and the product at the lower layer is subjected to acid dipping or distillation to remove surface residue to obtain metal zirconium.
    Type: Application
    Filed: December 9, 2012
    Publication date: April 18, 2013
    Applicant: SHENZHEN SUNXING LIGHT ALLOYS MATERIALS CO.,LTD
    Inventor: Shenzhen Sunxing Light Alloys Materials Co., Ltd.
  • Publication number: 20130095024
    Abstract: A method for cyclically preparing monomer boron and coproducing sodium cryolite using sodium fluoborate as an intermediate material, which includes the following steps: A) adding hydrofluoric acid to boric acid or boron oxide to enable a reaction to form fluoboric acid; B) adding a sodium carbonate aqueous solution to the fluoboric acid to enable a reaction to form the sodium fluoborate; C) putting the sodium fluoborate into a reactor, adding aluminium to react with the sodium fluoborate to form the monomer boron and sodium cryolite; D) extracting the sodium cryolite, sending the sodium cryolite to a rotary reaction kettle together with concentrated sulphuric acid to enable a reaction to form hydrogen fluoride gas and aluminium sodium sulphate, collecting the hydrogen fluoride gas and dissolving it into water to obtain the hydrofluoric acid; E) recycling the obtained hydrofluoric acid to Step A to leach the boric acid or boron oxide.
    Type: Application
    Filed: December 9, 2012
    Publication date: April 18, 2013
    Applicant: SHENZHEN SUNXING LIGHT ALLOYS MATERIALS CO.,LTD
    Inventor: Shenzhen Sunxing Light Alloys Materials Co.,Ltd
  • Publication number: 20130092550
    Abstract: The disclosure provides low-molecular-ratio cryolite for aluminium electrolytic industry, which consists of potassium cryolite and sodium cryolite with a mole ratio of 1:1˜1:3, wherein the molecular formula of the potassium cryolite is mKF.AlF3 and the molecular formula of the sodium cryolite is nNaF.AlF3, where m=1˜1.5 and n=1˜1.5. When the low-molecular-ratio cryolite provided by the disclosure is applied to the aluminium electrolytic industry, electrolytic temperature and power consumption can be reduced and electrolytic efficiency is improved.
    Type: Application
    Filed: December 9, 2012
    Publication date: April 18, 2013
    Applicant: SHENZHEN SUNXING LIGHT ALLOYS MATERIALS CO.,LTD
    Inventor: Shenzhen Sunxing Light Alloys Materials Co.,Ltd
  • Publication number: 20130095022
    Abstract: The invention provides a preparation process of transition metal boride, comprising the following steps: A) aluminum is put in a reactor, inert gas is fed into the reactor after evacuation, the reactor is heated up to 700 to 800° C. and then added with dry potassium fluoborate or sodium fluoborate, monomer boron and cryolite are generated by rapid stirring and reaction for 4 to 6 hours, and the molten liquid at the upper layer is sucked out and the monomer boron is obtained by means of separation; and B) the obtained monomer boron is added with transition metal for reaction at the temperature from 1800 to 2200° C. in order to generate corresponding transition metal boride.
    Type: Application
    Filed: December 9, 2012
    Publication date: April 18, 2013
    Applicant: SHENZHEN SUNXING LIGHT ALLOYS MATERIALS CO.,LTD
    Inventor: Shenzhen Sunxing Light Alloys Materials Co., Ltd.
  • Publication number: 20130092552
    Abstract: The invention provides a potassium cryolite for aluminum electrolysis industry, which has a molecular formula: mKF.AlF3, wherein m is from 1 to 1.5. The low-molecular-ratio potassium cryolite (mKF.AlF3, and m is from 1 to 1.5) provided by the invention is used for aluminum electrolysis industry, and can improve the dissolvability of aluminum oxide, thus reducing the temperature of electrolysis and the consumption of power, raising the efficiency of electrolysis and lowering the comprehensive production cost.
    Type: Application
    Filed: December 9, 2012
    Publication date: April 18, 2013
    Applicant: SHENZHEN SUNXING LIGHT ALLOYS MATERIALS CO.,LTD
    Inventor: Shenzhen Sunxing Light Alloys Materials Co., Ltd.