Patents by Inventor Sherif Hatem Abdulla Mohamed

Sherif Hatem Abdulla Mohamed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9534541
    Abstract: A gas turbine engine is presented. The gas turbine engine includes a control unit having a first bypass channel that is coupled between an outlet of a first turbine and an inlet of a second turbine. Further, the control unit includes a second bypass channel coupled between a first outlet of a compressor unit and the inlet of the second turbine. Additionally, the control unit includes a first control valve coupled to the first bypass channel and configured to direct at least a first portion of exhaust gas from the first turbine to the inlet of the second turbine via the first bypass channel. Furthermore, the control unit includes a second control valve coupled to the second bypass channel and configured to direct at least a first portion of compressed air from the compressor unit to the inlet of the second turbine via the second bypass channel.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: January 3, 2017
    Assignee: General Electric Company
    Inventors: Kapil Kumar Singh, Sherif Hatem Abdulla Mohamed
  • Publication number: 20150101340
    Abstract: A gas turbine engine is presented. The gas turbine engine includes a control unit having a first bypass channel that is coupled between an outlet of a first turbine and an inlet of a second turbine. Further, the control unit includes a second bypass channel coupled between a first outlet of a compressor unit and the inlet of the second turbine. Additionally, the control unit includes a first control valve coupled to the first bypass channel and configured to direct at least a first portion of exhaust gas from the first turbine to the inlet of the second turbine via the first bypass channel. Furthermore, the control unit includes a second control valve coupled to the second bypass channel and configured to direct at least a first portion of compressed air from the compressor unit to the inlet of the second turbine via the second bypass channel.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 16, 2015
    Applicant: General Electric Company
    Inventors: Kapil Kumar Singh, Sherif Hatem Abdulla Mohamed
  • Publication number: 20140150402
    Abstract: In one aspect, a combustion system is configured to facilitate preventing the formation of vanadium pentoxide (V2O5) and decrease a concentration of at least one of vanadium trioxide (V2O3) and vanadium tetroxide (V2O4) particles in an exhaust. The combustion system includes a vanadium-containing fuel supply and a combustor. The combustor is configured to generate a combustor exhaust gas including vanadium trioxide (V2O3) and/or vanadium tetroxide (V2O4) particles and to combust a reduced-oxygen mixture including the vanadium-containing fuel, ambient air, and a portion of the combustor exhaust gas. The combustion system also includes a particle separator configured to remove substantially all of the V2O3 and/or V2O4 particles from the combustor exhaust gas. A method for combusting fuel and a power generation system are also provided.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Applicant: General Electric Company
    Inventors: Ahmed Mostafa ElKady, Sherif Hatem Abdulla Mohamed, Narendra Digamber Joshi, Hasan Karim, Gilbert Otto Kraemer, Samuel David Draper, Ashwin Raman
  • Publication number: 20120103604
    Abstract: In one aspect, the present invention provides a subsurface heating device comprising: (a) a combustion conduit casing defining a combustion conduit; (b) at least two combustors disposed within the combustion conduit casing; (c) at least one fuel supply conduit; d) at least one oxygen supply conduit configured to supply oxygen to at least one combustor; and (e) a combustion product gas outlet. The at least two combustors are characterized by an inter-combustor distance of at least one thousand feet and a combustion power of at least 3.41 million BTU per hour. The at least one fuel supply conduit is configured to supply a combustible fuel to at least one combustor. Also provided in another aspect of the present invention, is a method for heating a subsurface zone.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sherif Hatem Abdulla Mohamed, Richard Blair Sheldon, Ahmed Mostafa ELKady, Andrei Tristan Evulet, Michael Francis Xavier Gigliotti, JR., James William Bray
  • Publication number: 20120028201
    Abstract: In one aspect, the present invention provides a subsurface heater comprising: a combustible gas supply conduit; an oxygen supply conduit and a heat transmissive external housing encompassing a porous refractory medium. The combustible gas supply conduit and the oxygen supply conduit are configured as a concentric pair disposed within the porous refractory medium and coupled to a plurality of gas jets disposed within the porous refractory medium. The porous refractory medium has disposed within it a plurality of combustion product gas return conduits. The combustion product gas return conduits are configured to receive combustion product gases from the porous refractory medium. Also provided in another aspect of the present invention, is a method for heating a subsurface zone.
    Type: Application
    Filed: July 30, 2010
    Publication date: February 2, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sherif Hatem Abdulla Mohamed, Narendra Digamber Joshi, Michael Solomon Idelchik, Kelly Roy Fletcher
  • Publication number: 20110126563
    Abstract: A device, such as an absorption chiller sub-system, is provided. The absorption chiller sub-system can include an evaporator and an absorber. The evaporator can be configured to receive a liquid first working fluid and to produce first working fluid vapor. The absorber can be configured to receive and combine first working fluid vapor and a second working fluid, for example, so as to release thermal energy. A divider having opposing first and second sides in respective fluid communication with the evaporator and the absorber can also be included. The divider can be configured to allow first working fluid vapor to pass therethrough between the first and second sides and to inhibit movement of liquid first working fluid therethrough between the first and second sides. Associated systems and methods are also provided.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 2, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ching-Jen Tang, William Dwight Gerstler, AliciA Jillian Jackson Hardy, Helge Klockow, Sherif Hatem Abdulla Mohamed, Andrew Philip Shapiro, Yogen Vishwas Utturkar, Todd Garrett Wetzel, Paul Brian Wickersham