Patents by Inventor Sherri M. Nelson

Sherri M. Nelson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10676845
    Abstract: A composite rod for use in various applications, such as electrical cables (e.g., high voltage transmission cables), power umbilicals, tethers, ropes, and a wide variety of other structural members, is provided. The rod includes a core that is formed from a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix. The present inventors have discovered that the degree to which the rovings are impregnated with the thermoplastic polymer matrix can be significantly improved through selective control over the impregnation process, and also through control over the degree of compression imparted to the rovings during formation and shaping of the rod, as well as the calibration of the final rod geometry. Such a well impregnated rod has a very small void fraction, which leads to excellent strength properties. Notably, the desired strength properties may be achieved without the need for different fiber types in the rod.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: June 9, 2020
    Assignee: Ticona LLC
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy L. Tibor, Timothy A. Regan, Michael L. Wesley, Richard Stiehm
  • Publication number: 20180197658
    Abstract: The present invention discloses electrical cables containing a cable core and a plurality of conductive elements surrounding the cable core. The cable core contains at least one composite core, and each composite core contains a rod which contains a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix, and surrounded by a capping layer.
    Type: Application
    Filed: March 9, 2018
    Publication date: July 12, 2018
    Inventors: Allan Daniel, Paul Springer, Yuhsin Hawig, Mark Lancaster, David W. Eastep, Sherri M. Nelson, Tim Tibor, Tim Regan, Michael L. Wesley
  • Patent number: 9919481
    Abstract: A structural member that contains a solid lineal profile that is formed from a plurality of consolidated ribbons is provided. Each of the ribbons includes unidirectionally aligned continuous fibers embedded within a thermoplastic polymer matrix. The continuous fiber ribbons are laminated together during pultrusion to form an integral solid profile having very high tensile strength properties. Contrary to conventional wisdom, the present inventors have discovered that careful control over certain aspects of the pultrusion process can allow such high strength profiles to be readily formed without adversely impacting the pultrusion apparatus.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: March 20, 2018
    Assignee: Ticona LLC
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy A. Regan, Michael L. Wesley, Richard Steihm
  • Publication number: 20170256338
    Abstract: The present invention discloses electrical cables containing a cable core and a plurality of conductive elements surrounding the cable core. The cable core contains at least one composite core, and each composite core contains a rod which contains a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix, and surrounded by a capping layer.
    Type: Application
    Filed: May 16, 2017
    Publication date: September 7, 2017
    Inventors: Allan Daniel, Paul Springer, Yuhsin Hawig, Mark Lancaster, David W. Eastep, Sherri M. Nelson, Tim Tibor, Tim Regan, Michael L. Wesley
  • Patent number: 9685257
    Abstract: The present invention discloses electrical cables containing a cable core and a plurality of conductive elements surrounding the cable core. The cable core contains at least one composite core, and each composite core contains a rod which contains a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix, and surrounded by a capping layer.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: June 20, 2017
    Assignee: Southwire Company, LLC
    Inventors: Allan Daniel, Paul Springer, Yuhsin Hawig, Mark Lancaster, David W. Eastep, Sherri M. Nelson, Tim Tibor, Tim Regan, Michael L. Wesley
  • Patent number: 9659680
    Abstract: A composite core for use in electrical cables, such as high voltage transmission cables is provided. The composite core contains at least one rod that includes a continuous fiber component surrounded by a capping layer. The continuous fiber component is formed from a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix. The present inventors have discovered that the degree to which the rovings are impregnated with the thermoplastic polymer matrix can be significantly improved through selective control over the impregnation process, and also through control over the degree of compression imparted to the rovings during formation and shaping of the rod, as well as the calibration of the final rod geometry. Such a well impregnated rod has a very small void fraction, which leads to excellent strength properties. Notably, the desired strength properties may be achieved without the need for different fiber types in the rod.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: May 23, 2017
    Assignee: Ticona LLC
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy L. Tibor, Timothy A. Regan, Michael L. Wesley, Richard Steihm
  • Publication number: 20160351300
    Abstract: The present invention discloses electrical cables containing a cable core and a plurality of conductive elements surrounding the cable core. The cable core contains at least one composite core, and each composite core contains a rod which contains a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix, and surrounded by a capping layer.
    Type: Application
    Filed: August 15, 2016
    Publication date: December 1, 2016
    Inventors: Allan Daniel, Paul Springer, Yuhsin Hawig, Mark Lancaster, David W. Eastep, Sherri M. Nelson, Tim Tibor, Tim Regan, Michael L. Wesley
  • Patent number: 9443635
    Abstract: The present invention discloses electrical cables containing a cable core and a plurality of conductive elements surrounding the cable core. The cable core contains at least one composite core, and each composite core contains a rod which contains a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix, and surrounded by a capping layer.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: September 13, 2016
    Assignee: Southwire Company, LLC
    Inventors: Allan Daniel, Paul Springer, Yuhsin Hawig, Mark Lancaster, David W. Eastep, Sherri M. Nelson, Tim Tibor, Tim Regan, Michael L. Wesley
  • Patent number: 9409347
    Abstract: A method and apparatus for forming a profile that contains at least one layer of continuous fibers and at least one layer of discontinuous fibers. Said method allowing the selective control of features to achieve a profile that has increased transverse strength and flexural modulus. The layer of continuous fibers may be formed from one or more continuous fiber reinforced ribbons (“CFRT”) (12) that contain fibers embedded within a thermoplastic polymer matrix, whereby a void fraction and in turn is minimized and flexural modulus is optimized Further, the ribbon (s) are consolidated so that the continuous fibers remain fixed in alignment in a substantially longitudinal direction (e.g., the direction of pultrusion). In addition to enhancing the tensile properties of the profile, the use of such ribbons also allows an improved handability when placing them into the desired position within the pultrusion die.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: August 9, 2016
    Assignee: Ticona LLC
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy A. Regan
  • Publication number: 20160096335
    Abstract: A structural member that contains a solid lineal profile that is formed from a plurality of consolidated ribbons is provided. Each of the ribbons includes unidirectionally aligned continuous fibers embedded within a thermoplastic polymer matrix. The continuous fiber ribbons are laminated together during pultrusion to form an integral solid profile having very high tensile strength properties. Contrary to conventional wisdom, the present inventors have discovered that careful control over certain aspects of the pultrusion process can allow such high strength profiles to be readily formed without adversely impacting the pultrusion apparatus.
    Type: Application
    Filed: December 11, 2015
    Publication date: April 7, 2016
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy A. Regan, Michael L. Wesley, Richard Steihm
  • Publication number: 20160035453
    Abstract: A composite core for use in electrical cables, such as high voltage transmission cables is provided. The composite core contains at least one rod that includes a continuous fiber component surrounded by a capping layer. The continuous fiber component is formed from a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix. The present inventors have discovered that the degree to which the rovings are impregnated with the thermoplastic polymer matrix can be significantly improved through selective control over the impregnation process, and also through control over the degree of compression imparted to the rovings during formation and shaping of the rod, as well as the calibration of the final rod geometry. Such a well impregnated rod has a very small void fraction, which leads to excellent strength properties. Notably, the desired strength properties may be achieved without the need for different fiber types in the rod.
    Type: Application
    Filed: October 15, 2015
    Publication date: February 4, 2016
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy L. Tibor, Timothy A. Regan, Michael L. Wesley, Richard Steihm
  • Patent number: 9238347
    Abstract: A structural member that contains a solid lineal profile (516, 600, 700) that is formed from a plurality of consolidated ribbons (12). Each of the ribbons includes unidirectionally aligned continuous fibers embedded within a thermoplastic polymer matrix. The continuous fiber ribbons (12) are laminated together during pultrusion to form an integral solid profile (516, 600, 700) having very high tensile strength properties.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: January 19, 2016
    Assignee: Ticona LLC
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy A. Regan, Michael L. Wesley, Richard Stiehm
  • Patent number: 9190184
    Abstract: A composite core for use in electrical cables, such as high voltage transmission cables is provided. The composite core contains at least one rod that includes a continuous fiber component surrounded by a capping layer. The continuous fiber component is formed from a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix. The present inventors have discovered that the degree to which the rovings are impregnated with the thermoplastic polymer matrix can be significantly improved through selective control over the impregnation process, and also through control over the degree of compression imparted to the rovings during formation and shaping of the rod, as well as the calibration of the final rod geometry. Such a well impregnated rod has a very small void fraction, which leads to excellent strength properties. Notably, the desired strength properties may be achieved without the need for different fiber types in the rod.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: November 17, 2015
    Assignee: Ticona LLC
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy L. Tibor, Timothy A. Regan, Michael L. Wesley, Richard Stiehm
  • Publication number: 20150194238
    Abstract: The present invention discloses electrical cables containing a cable core and a plurality of conductive elements surrounding the cable core. The cable core contains at least one composite core, and each composite core contains a rod which contains a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix, and surrounded by a capping layer.
    Type: Application
    Filed: March 18, 2015
    Publication date: July 9, 2015
    Inventors: Allan Daniel, Paul Springer, Yuhsin Hawig, Mark Lancaster, David W. Eastep, Sherri M. Nelson, Tim Tibor, Tim Regan, Michael L. Wesley
  • Patent number: 9012781
    Abstract: The present invention discloses electrical cables containing a cable core and a plurality of conductive elements surrounding the cable core. The cable core contains at least one composite core, and each composite core contains a rod which contains a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix, and surrounded by a capping layer.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: April 21, 2015
    Assignee: Southwire Company, LLC
    Inventors: Allan Daniel, Paul Springer, Yuhsin Hawig, Mark Lancaster, David W. Eastep, Sherri M. Nelson, Tim Tibor, Tim Regan, Michael L. Wesley
  • Publication number: 20150084228
    Abstract: A hollow lineal profile formed from a continuous fiber reinforced ribbon (“CFRT”) that contains a plurality of continuous fibers embedded within a first thermoplastic polymer matrix. To enhance the tensile strength of the profile, the continuous fibers are aligned within the ribbon in a substantially longitudinal direction (e.g., the direction of pultrusion). In addition to continuous fibers, the hollow profile of the present invention also contains a plurality of long fibers that may be optionally embedded within a second thermoplastic matrix to form a long fiber reinforced thermoplastic (“LFRT”). The long fibers may be incorporated into the continuous fiber ribbon or formed as a separate layer of the profile. Regardless, at least at a portion of the long fibers are oriented at an angle (e.g., 90°) to the longitudinal direction to provide increased transverse strength to the profile.
    Type: Application
    Filed: October 8, 2014
    Publication date: March 26, 2015
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy A. Regan
  • Patent number: 8921692
    Abstract: An umbilical (600) for the transfer of fluids and/or electric current/signals, particularly between the sea surface and equipment deployed on the sea bed (e.g., in deep waters), is provided. The umbilical contains a plurality of elongated umbilical elements (e.g., two or more), such as a channel element (603), fluid pipe (604), electric conductor/wire (606) (e.g., optic fiber cable), armoring wire, etc., enclosed within an outer sheath (e.g., plastic sheath). The umbilical also contains at least one reinforcing rod (607) formed from a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: December 30, 2014
    Assignee: Ticona LLC
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy A. Regan, Michael L. Wesley
  • Patent number: 8859089
    Abstract: A hollow lineal profile (16) formed from a continuous fiber reinforced ribbon (“CFRT”) that contains a plurality of continuous fibers embedded within a first thermoplastic polymer matrix (6). To enhance the tensile strength of the profile, the continuous fibers are aligned within the ribbon in a substantially longitudinal direction (e.g., the direction of pultrusion). In addition to continuous fibers, the hollow profile of the present invention also contains a plurality of long fibers that may be optionally embedded within a second thermoplastic matrix to form a long fiber reinforced thermoplastic (“LFRT”) (4). The long fibers may be incorporated into the continuous fiber ribbon or formed as a separate layer of the profile. Regardless, at least a portion of the long fibers are oriented at an angle (e.g., 90°) to the longitudinal direction to provide increased transverse strength to the profile.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: October 14, 2014
    Assignee: Ticona LLC
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy A. Regan
  • Publication number: 20140106166
    Abstract: A composite rod for use in various applications, such as electrical cables (e.g., high voltage transmission cables), power umbilicals, tethers, ropes, and a wide variety of other structural members, is provided. The rod includes a core that is formed from a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix. The present inventors have discovered that the degree to which the rovings are impregnated with the thermoplastic polymer matrix can be significantly improved through selective control over the impregnation process, and also through control over the degree of compression imparted to the rovings during formation and shaping of the rod, as well as the calibration of the final rod geometry. Such a well impregnated rod has a very small void fraction, which leads to excellent strength properties. Notably, the desired strength properties may be achieved without the need for different fiber types in the rod.
    Type: Application
    Filed: April 11, 2012
    Publication date: April 17, 2014
    Applicant: Ticona LLC
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy L. Tibor, Timothy A. Regan, Michael L. Wesley
  • Publication number: 20140102760
    Abstract: A composite core for use in electrical cables, such as high voltage transmission cables is provided. The composite core contains at least one rod that includes a continuous fiber component surrounded by a capping layer. The continuous fiber component is formed from a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix. The present inventors have discovered that the degree to which the rovings are impregnated with the thermoplastic polymer matrix can be significantly improved through selective control over the impregnation process, and also through control over the degree of compression imparted to the rovings during formation and shaping of the rod, as well as the calibration of the final rod geometry. Such a well impregnated rod has a very small void fraction, which leads to excellent strength properties. Notably, the desired strength properties may be achieved without the need for different fiber types in the rod.
    Type: Application
    Filed: April 11, 2012
    Publication date: April 17, 2014
    Applicant: Ticona LLC
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy L. Tibor, Timothy A. Regan, Michael L. Wesley