Patents by Inventor Sherry R. Taft

Sherry R. Taft has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10249742
    Abstract: A method including forming a non-planar conducting channel of a device between junction regions on a substrate, the substrate including a blocking material beneath the channel, the blocking material including a property to inhibit carrier leakage; and forming a gate stack on the channel, the gate stack including a dielectric material and a gate electrode. A method including forming a buffer material on a semiconductor substrate, the buffer material including a semiconductor material including a different lattice structure than the substrate; forming a blocking material on the buffer material, the blocking material including a property to inhibit carrier leakage; and forming a transistor device on the substrate. An apparatus including a non-planar multi-gate device on a substrate including a transistor device including a channel disposed on a substrate including a blocking material beneath the channel, the blocking material including a property to inhibit carrier leakage.
    Type: Grant
    Filed: June 27, 2015
    Date of Patent: April 2, 2019
    Assignee: Intel Corporation
    Inventors: Van H. Le, Gilbert Dewey, Benjamin Chu-Kung, Ashish Agrawal, Matthew V. Metz, Willy Rachmady, Marc C. French, Jack T. Kavalieros, Rafael Rios, Seiyon Kim, Seung Hoon Sung, Sanaz K. Gardner, James M. Powers, Sherry R. Taft
  • Patent number: 10204989
    Abstract: Techniques are disclosed for forming a defect-free semiconductor structure on a dissimilar substrate with a multi-aspect ratio mask. The multi-aspect ratio mask comprises a first, second, and third layer formed on a substrate. The second layer has a second opening wider than a first opening and a third opening in the first and third layers, respectively. All three openings are centered along a common central axis. A semiconductor material is grown from the top surface of the substrate and laterally onto the top surface of the first layer within the second opening. The semiconductor material disposed within and vertically below the third opening is etched by using the third layer as an etch mask so that the remaining material that laterally overflowed onto the top surface of the first layer forms a remaining structure.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: February 12, 2019
    Assignee: Intel Corporation
    Inventors: Benjamin Chu-Kung, Sherry R. Taft, Van H. Le, Sansaptak Dasgupta, Seung Hoon Sung, Sanaz K. Gardner, Matthew V. Metz, Marko Radosavljevic, Han Wui Then
  • Publication number: 20180158933
    Abstract: A method including forming a non-planar conducting channel of a device between junction regions on a substrate, the substrate including a blocking material beneath the channel, the blocking material including a property to inhibit carrier leakage; and forming a gate stack on the channel, the gate stack including a dielectric material and a gate electrode. A method including forming a buffer material on a semiconductor substrate, the buffer material including a semiconductor material including a different lattice structure than the substrate; forming a blocking material on the buffer material, the blocking material including a property to inhibit carrier leakage; and forming a transistor device on the substrate. An apparatus including a non-planar multi-gate device on a substrate including a transistor device including a channel disposed on a substrate including a blocking material beneath the channel, the blocking material including a property to inhibit carrier leakage.
    Type: Application
    Filed: June 27, 2015
    Publication date: June 7, 2018
    Inventors: Van H. LE, Gilbert DEWEY, Benjamin CHU-KUNG, Ashish AGRAWAL, Matthew V. METZ, Willy RACHMADY, Marc C. FRENCH, Jack T. KAVALIEROS, Rafael RIOS, Seiyon KIM, Seung Hoon SUNG, Sanaz K. GARDNER, James M. POWERS, Sherry R. TAFT
  • Publication number: 20170271448
    Abstract: Techniques are disclosed for forming a defect-free semiconductor structure on a dissimilar substrate with a multi-aspect ratio mask. The multi-aspect ratio mask comprises a first, second, and third layer formed on a substrate. The second layer has a second opening wider than a first opening and a third opening in the first and third layers, respectively. All three openings are centered along a common central axis. A semiconductor material is grown from the top surface of the substrate and laterally onto the top surface of the first layer within the second opening. The semiconductor material disposed within and vertically below the third opening is etched by using the third layer as an etch mask so that the remaining material that laterally overflowed onto the top surface of the first layer forms a remaining structure.
    Type: Application
    Filed: May 17, 2017
    Publication date: September 21, 2017
    Inventors: Benjamin CHU-KUNG, Sherry R. TAFT, Van H. LE, Sansaptak DASGUPTA, Seung Hoon SUNG, Sanaz K. GARDNER, Matthew V. METZ, Marko RADOSAVLJEVIC, Han Wui THEN
  • Patent number: 9698222
    Abstract: Techniques are disclosed for forming a defect-free semiconductor structure on a dissimilar substrate with a multi-aspect ratio mask. The multi-aspect ratio mask comprises a first, second, and third layer formed on a substrate. The second layer has a second opening wider than a first opening and a third opening in the first and third layers, respectively. All three openings are centered along a common central axis. A semiconductor material is grown from the top surface of the substrate and laterally onto the top surface of the first layer within the second opening. The semiconductor material disposed within and vertically below the third opening is etched by using the third layer as an etch mask so that the remaining material that laterally overflowed onto the top surface of the first layer forms a remaining structure.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: July 4, 2017
    Assignee: Intel Corporation
    Inventors: Benjamin Chu-Kung, Sherry R. Taft, Van H. Le, Sansaptak Dasgupta, Seung Hoon Hoon Sung, Sanaz K. Gardner, Matthew V. Metz, Marko Radosavljevic, Han Wui Then
  • Patent number: 9640422
    Abstract: A trench comprising a portion of a substrate is formed. A nucleation layer is deposited on the portion of the substrate within the trench. A III-N material layer is deposited on the nucleation layer. The III-N material layer is laterally grown over the trench. A device layer is deposited on the laterally grown III-N material layer. A low defect density region is obtained on the laterally grown material and is used for electronic device fabrication of III-N materials on Si substrates.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: May 2, 2017
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Han Wui Then, Sanaz K. Gardner, Seung Hoon Sung, Marko Radosavljevic, Benjamin Chu-Kung, Sherry R. Taft, Ravi Pillarisetty, Robert S. Chau
  • Publication number: 20160276438
    Abstract: Techniques are disclosed for forming a defect-free semiconductor structure on a dissimilar substrate with a multi-aspect ratio mask. The multi-aspect ratio mask comprises a first, second, and third layer formed on a substrate. The second layer has a second opening wider than a first opening and a third opening in the first and third layers, respectively. All three openings are centered along a common central axis. A semiconductor material is grown from the top surface of the substrate and laterally onto the top surface of the first layer within the second opening. The semiconductor material disposed within and vertically below the third opening is etched by using the third layer as an etch mask so that the remaining material that laterally overflowed onto the top surface of the first layer forms a remaining structure.
    Type: Application
    Filed: December 23, 2013
    Publication date: September 22, 2016
    Inventors: Benjamin CHU-KUNG, Sherry R. TAFT, Van H. LE, Sansaptak DASGUPTA, Seung Hoon Hoon SUNG, Sanaz K. GARDNER, Matthew V. METZ, Marko RADOSAVLJEVIC, Han Wui THEN
  • Publication number: 20150206796
    Abstract: A trench comprising a portion of a substrate is formed. A nucleation layer is deposited on the portion of the substrate within the trench. A III-N material layer is deposited on the nucleation layer. The III-N material layer is laterally grown over the trench. A device layer is deposited on the laterally grown III-N material layer. A low defect density region is obtained on the laterally grown material and is used for electronic device fabrication of III-N materials on Si substrates.
    Type: Application
    Filed: January 23, 2014
    Publication date: July 23, 2015
    Inventors: Sansaptak Dasgupta, Han Wui Then, Sanaz K. Gardner, Seung Hoon Sung, Marko Radosavljevic, Benjamin Chu-Kung, Sherry R. Taft, Ravi Pillarisetty, Robert S. Chau