Patents by Inventor Sheryl Leigh Woodward

Sheryl Leigh Woodward has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7990977
    Abstract: A method of sending data from a transmit site to a receive device includes dividing a first transmit data stream having a first bit rate into multiple data streams with each of the multiple data streams having a bit rate that is lower than the first bit rate. Each of the multiple data streams is transmitted over a cable network having multiple radio frequency channels. The multiple data streams are recombined at the receive device to provide a receive data stream having a bit rate equal to the first bit rate. A second transmit data stream is transmitted over one of the radio frequency channels to a legacy user connected to the one radio frequency channel between the transmit site and the receive device.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: August 2, 2011
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Bhavesh N. Desai, Nemmara K. Shankaranarayanan, David Hilton Shur, Aleksandra Smiljanic, Todd J. Totland, Jacobus E. van der Merwe, Sheryl Leigh Woodward
  • Patent number: 7865081
    Abstract: Disclosed is an architecture enabling premium services to be provided over fiber to high-end users/customers. This architecture has a plurality of nodes and a passive optical device inserted prior to one of the nodes. The optical device allows wavelengths provisioned for original service(s) to pass through with minimal loss, while other wavelengths provisioned for the premium services are diverted onto a new fiber. This new fiber may be installed at the time of the upgrade, but, sometimes, dark fiber is available. Dark fiber is fiber that carries no optical signals.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: January 4, 2011
    Assignee: AT&T Intellectual Property II, L.P.
    Inventor: Sheryl Leigh Woodward
  • Patent number: 7831147
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: November 9, 2010
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Publication number: 20100265942
    Abstract: A receive device includes a plurality of demodulators and a tunnel destination. The demodulators are configured to receive multiple data streams, each of the multiple data streams having a bit rate that is lower than a bit rate of a transmit data stream. The tunnel destination is configured to recombine the multiple data streams to provide a receive data stream having a bit rate equal to the bit rate of the transmit data stream. At least one of multiple radio frequency channels is connected to a legacy user between a transmit site and the receive device.
    Type: Application
    Filed: April 23, 2010
    Publication date: October 21, 2010
    Applicant: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: Bhavesh N. Desai, Nemmara K. Shankaranarayanan, David Hilton Shur, Aleksandra Smiljanic, Todd J. Totland, Jacobus E. Van der Merwe, Sheryl Leigh Woodward
  • Patent number: 7783196
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: August 24, 2010
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Publication number: 20100208751
    Abstract: A method of sending data from a transmit site to a receive device includes dividing a first transmit data stream having a first bit rate into multiple data streams with each of the multiple data streams having a bit rate that is lower than the first bit rate. Each of the multiple data streams is transmitted over a cable network having multiple radio frequency channels. The multiple data streams are recombined at the receive device to provide a receive data stream having a bit rate equal to the first bit rate. A second transmit data stream is transmitted over one of the radio frequency channels to a legacy user connected to the one radio frequency channel between the transmit site and the receive device.
    Type: Application
    Filed: April 23, 2010
    Publication date: August 19, 2010
    Applicant: AT&T Intellectual Property I, L.P.
    Inventors: Bhavesh N. Desai, Nemmara K. Shankaranarayanan, David Hilton Shur, Aleksandra Smiljanic, Todd J. Totland, Jacobus E.Van der Merwe, Sheryl Leigh Woodward
  • Patent number: 7734179
    Abstract: A communication system between head-ends and end-users is provided which expands bandwidth and reliability. A concentrator receives communication signals from a head-end and forwards the received communication signals to one or more fiber nodes and/or one or more mini-fiber nodes. The concentrator demultiplexes/splits received signals for the mini-fiber nodes and the fiber nodes and forwards demultiplexed/split signals respectively. The mini-fiber nodes may combine signals received from the head-end with loop-back signals used for local medium access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and/or fiber node and transmitted to the concentrator. The concentrator multiplexes/couples the mini-fiber node and the fiber node upstream signals and forwards multiplexed/coupled signals to the head-end.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: June 8, 2010
    Assignee: AT&T Corp.
    Inventors: Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Sheryl Leigh Woodward
  • Publication number: 20100124391
    Abstract: A multi-degree expandable reconfigurable optical add drop multiplexer (ROADM) based on a wavelength-selective crossconnect (WSXC), and method for upgrading the same. The WSXC generally consists of an outer layer of optical fan-out devices, and an outer layer of optical fan-in devices. At least one inner layer of optical fan-out or fan-in devices, including at least one wavelength switch, is disposed between the outer layer of optical fan-out devices and the outer layer of optical fan-in devices in a cascaded arrangement relative to the outer layers. At least one output port of an optical fan-out device in the outer layer of optical fan-out devices is connected to an input port of an optical device in the at least one inner layer, and at least one output port of an optical device in the at least one inner layer is connected to an input port of an optical fan-in device in the outer layer of optical fan-in devices.
    Type: Application
    Filed: November 18, 2008
    Publication date: May 20, 2010
    Inventors: Mark David Feuer, Sheryl Leigh Woodward
  • Publication number: 20090290543
    Abstract: A method includes receiving a plurality of radio frequency (RF) channels in parallel at a receive site, and demodulating the RF channels using a plurality of demodulators of the receive site to generate a plurality of streams of packets, each stream of packets having a first address space. The method also includes combining the plurality of streams of packets at a tunneling destination of the receive site to generate a first stream of packets having a second address space.
    Type: Application
    Filed: August 4, 2009
    Publication date: November 26, 2009
    Applicant: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: Bhavesh N. Desai, Nemmara K. Shankaranarayanan, David Hilton Shur, Aleksandra Smiljanic, Todd L. Totland, Jacobus Van der Merwe, Sheryl Leigh Woodward
  • Publication number: 20090205007
    Abstract: A system is provided for combining conventional HFC plants with fiber-optic access systems (e.g., fiber-to-the-home or fiber-to-the-curb) that share a head-end and other equipment. A robust modulation format, such as QPSK, having a sufficient SNR to transmit information (e.g., data, digital audio and digital video) downstream to users' premises via a fiber-optic access system is used. Also, a method and apparatus is provided for converting a first modulation format for information received via a fiber-optic access system to a modulation format compatible with customer premises equipment.
    Type: Application
    Filed: March 3, 2009
    Publication date: August 13, 2009
    Inventor: Sheryl Leigh Woodward
  • Publication number: 20090067841
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Application
    Filed: November 10, 2008
    Publication date: March 12, 2009
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Patent number: 7450850
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: November 11, 2008
    Assignee: AT&T Corp.
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Patent number: 7394984
    Abstract: Disclosed is an architecture enabling premium services to be provided over fiber to high-end users/customers. This architecture has a plurality of nodes and a passive optical device inserted prior to one of the nodes. The optical device allows wavelengths provisioned for original service(s) to pass through with minimal loss, while other wavelengths provisioned for the premium services are diverted onto a new fiber. This new fiber may be installed at the time of the upgrade, but, sometimes, dark fiber is available. Dark fiber is fiber that carries no optical signals.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: July 1, 2008
    Assignee: AT&T Corp.
    Inventor: Sheryl Leigh Woodward
  • Patent number: 7283749
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: October 16, 2007
    Assignee: AT&T Corp.
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Patent number: 7190903
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: March 13, 2007
    Assignee: AT&T Corp.
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Patent number: 7095958
    Abstract: Disclosed is an architecture enabling premium services to be provided over fiber to high-end users/customers. The architecture has a plurality of nodes and a passive optical device inserted prior to one of the nodes. The optical device allows wavelengths provisioned for original service(s) to pass through with minimal loss, while other wavelengths provisioned for the premium services are diverted onto a new fiber. This new fiber may be installed at the time of the upgrade, but, sometimes, dark fiber is available. Dark fiber is fiber that carries no optical signals.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: August 22, 2006
    Assignee: AT&T Corp.
    Inventor: Sheryl Leigh Woodward
  • Patent number: 7068937
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: June 27, 2006
    Assignee: AT&T Corp.
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Patent number: 7068940
    Abstract: According to the present invention, a system and method provides for monitoring and controlling light propagation in optical transmission systems. The system either includes an optical circulator coupled to an optical add mechanism and is used to detect light propagation, or an optical monitoring device is coupled to the optical circulator and to the optical add device via a feedback path to control light propagation.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: June 27, 2006
    Assignee: AT&T Corp.
    Inventor: Sheryl Leigh Woodward
  • Patent number: 7007297
    Abstract: A system is provided for combining conventional HFC plants with fiber-optic access systems (e.g., fiber-to-the-home or fiber-to-the-curb) that share a head-end and other equipment. A robust modulation format, such as QPSK, having a sufficient SNR to transmit information (e.g., data, digital audio and digital video) downstream to users' premises via a fiber-optic access system is used. Also, a method and apparatus is provided for converting a first modulation format for information received via a fiber-optic access system to a modulation format compatible with customer premises equipment.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: February 28, 2006
    Assignee: AT&T Corp.
    Inventor: Sheryl Leigh Woodward
  • Patent number: 6993353
    Abstract: A method for sending data from a transmit site to a receive site which includes dividing a transmit data stream having a first bit rate into multiple data streams with each of the multiple data streams having a bit rate which is lower than the first bit rate, transmitting each of the multiple data streams over a plurality of RF channels and recombining the multiple data streams at the receive site to provide a receive data stream having a bit rate equal to the first bit rate.
    Type: Grant
    Filed: August 8, 2001
    Date of Patent: January 31, 2006
    Assignee: AT&T Corp.
    Inventors: Bhavesh N. Desai, Nemmara K. Shankaranarayanan, David Hilton Shur, Aleksandra Smiljanic, Todd J. Totland, Jacobus E. van der Merwe, Sheryl Leigh Woodward