Patents by Inventor Shi-Eun Kim

Shi-Eun Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8405137
    Abstract: Single transistor floating-body DRAM devices have a vertical channel transistor structure. The DRAM devices include a substrate, and first and second floating bodies disposed on the substrate and isolated from each other. A source region and a drain region are disposed under and above each of the first and second floating bodies. A gate electrode is disposed between the first and second floating bodies. Methods of fabricating the single transistor floating-body DRAM devices are also provided.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: March 26, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Zong-Liang Huo, Seung-Jae Baik, In-Seok Yeo, Hong-Sik Yoon, Shi-Eun Kim
  • Publication number: 20120061752
    Abstract: Single transistor floating-body DRAM devices have a vertical channel transistor structure. The DRAM devices include a substrate, and first and second floating bodies disposed on the substrate and isolated from each other. A source region and a drain region are disposed under and above each of the first and second floating bodies. A gate electrode is disposed between the first and second floating bodies. Methods of fabricating the single transistor floating-body DRAM devices are also provided.
    Type: Application
    Filed: November 21, 2011
    Publication date: March 15, 2012
    Inventors: Zong-Liang Huo, Seung-Jae Baik, In-Seok Yeo, Hong-Sik Yoon, Shi-Eun Kim
  • Patent number: 8084316
    Abstract: Single transistor floating-body DRAM devices have a vertical channel transistor structure. The DRAM devices include a substrate, and first and second floating bodies disposed on the substrate and isolated from each other. A source region and a drain region are disposed under and above each of the first and second floating bodies. A gate electrode is disposed between the first and second floating bodies. Methods of fabricating the single transistor floating-body DRAM devices are also provided.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: December 27, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Zong-Liang Huo, Seung-Jae Baik, In-Seok Yeo, Hong-Sik Yoon, Shi-Eun Kim
  • Patent number: 7795659
    Abstract: In a DRAM device and a method of manufacturing the same, a multiple tunnel junction (MTJ) structure is provided, which includes conductive patterns and nonconductive patterns alternately stacked on each other. The nonconductive patterns have a band gap larger than a band gap of the conductive patterns. A gate insulation layer and a gate electrode are formed on a sidewall of the MTJ structure. A word line is connected with the MTJ structure, and a bit line is connected with one of top and bottom surfaces of the MTJ structure. A capacitor is connected with one of top and bottom surfaces of the MTJ structure that is not connected with the bit line. Current leakage in the DRAM device is reduced and a unit cells may be vertically stacked on the substrate, so a smaller surface area of the substrate is required for the DRAM device.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: September 14, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hong-Sik Yoon, In-Seok Yeo, Seung-Jae Baik, Zong-Liang Huo, Shi-Eun Kim
  • Publication number: 20080246067
    Abstract: In a DRAM device and a method of manufacturing the same, a multiple tunnel junction (MTJ) structure is provided, which includes conductive patterns and nonconductive patterns alternately stacked on each other. The nonconductive patterns have a band gap larger than a band gap of the conductive patterns. A gate insulation layer and a gate electrode are formed on a sidewall of the MTJ structure. A word line is connected with the MTJ structure, and a bit line is connected with one of top and bottom surfaces of the MTJ structure. A capacitor is connected with one of top and bottom surfaces of the MTJ structure that is not connected with the bit line. Current leakage in the DRAM device is reduced and a unit cells may be vertically stacked on the substrate, so a smaller surface area of the substrate is required for the DRAM device.
    Type: Application
    Filed: May 1, 2008
    Publication date: October 9, 2008
    Inventors: Hong-Sik Yoon, In-Seok Yeo, Seung-Jae Baik, Zong-Liang Huo, Shi-Eun Kim
  • Patent number: 7384841
    Abstract: In a DRAM device and a method of manufacturing the same, a multiple tunnel junction (MTJ) structure is provided, which includes conductive patterns and nonconductive patterns alternately stacked on each other. The nonconductive patterns have a band gap larger than a band gap of the conductive patterns. A gate insulation layer and a gate electrode are formed on a sidewall of the MTJ structure. A word line is connected with the MTJ structure, and a bit line is connected with one of top and bottom surfaces of the MTJ structure. A capacitor is connected with one of top and bottom surfaces of the MTJ structure that is not connected with the bit line. Current leakage in the DRAM device is reduced and a unit cells may be vertically stacked on the substrate, so a smaller surface area of the substrate is required for the DRAM device.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: June 10, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hong-Sik Yoon, In-Seok Yeo, Seung-Jae Baik, Zong-Liang Huo, Shi-Eun Kim
  • Publication number: 20080128802
    Abstract: Single transistor floating body dynamic random access memory (DRAM) cells include a semiconductor substrate and a barrier layer on the semiconductor substrate and a recess channel transistor on the barrier layer. The recess channel transistor includes a source region of a first conductivity type, a drain region of the first conductivity type spaced apart from the source region and a floating body of a second conductivity type between the barrier layer and the source region and the drain region. The floating body includes a recess region between the source region and the drain region.
    Type: Application
    Filed: January 14, 2008
    Publication date: June 5, 2008
    Inventors: Zong-Liang Huo, Seung-Jae Baik, In-Seok Yeo, Hong-Sik Yoon, Shi-Eun Kim
  • Patent number: 7368788
    Abstract: Complementary metal oxide semiconductor (CMOS) static random access memory (SRAM) cells include at least a first inverter formed in a fin-shaped pattern of stacked semiconductor regions of opposite conductivity type. In some of these embodiments, the first inverter includes a first conductivity type (e.g., P-type or N-type) MOS load transistor electrically coupled in series with a second conductivity type (e.g., N-type of P-type) MOS driver transistor. The first inverter is arranged so that active regions of the first conductivity type MOS load transistor and the second conductivity type driver transistor are vertically stacked relative to each other within a first portion of a vertical dual-conductivity semiconductor fin structure. This fin structure is surrounded on at least three sides by a wraparound gate electrode, which is configured to modulate conductivity of both the active regions in response to a gate signal.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: May 6, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Zong-Liang Huo, Seung-Jae Baik, In-Seok Yeo, Hong-Sik Yoon, Shi-Eun Kim
  • Patent number: 7338862
    Abstract: Methods of fabricating a single transistor floating body dynamic random access memory (DRAM) cell include forming a barrier layer on a semiconductor substrate. A body layer is formed on the barrier layer. An isolation layer is formed defining a floating body region within the body layer. A recess region is formed in the floating body region. A gate electrode is formed in the recess region. Impurity ions of a first conductivity type are implanted into a portion of the floating body region on a first side of the recess region to define a source region and into a portion of the floating body on an opposite side of the recess region to define a drain region to provide a floating body.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: March 4, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Zong-Liang Huo, Seung-Jae Baik, In-Seok Yeo, Hong-Sik Yoon, Shi-Eun Kim
  • Publication number: 20070007576
    Abstract: A non-volatile memory device includes a channel region defined between a source region and a drain region, a charge storage film disposed on the channel region to store a charge, and a tunnel insulating film interposed between the channel region and the charge storage film to tunnel the charge, the tunnel insulating film having a quantum confinement film.
    Type: Application
    Filed: July 7, 2006
    Publication date: January 11, 2007
    Inventors: Shi-Eun Kim, Seung-Jae Baik, Zong-Liang Huo, In-Seok Yeo, Seung-Hyun Lim, Jeong-Hee Han
  • Publication number: 20060249770
    Abstract: Single transistor floating-body DRAM devices have a vertical channel transistor structure. The DRAM devices include a substrate, and first and second floating bodies disposed on the substrate and isolated from each other. A source region and a drain region are disposed under and above each of the first and second floating bodies. A gate electrode is disposed between the first and second floating bodies. Methods of fabricating the single transistor floating-body DRAM devices are also provided.
    Type: Application
    Filed: May 1, 2006
    Publication date: November 9, 2006
    Inventors: Zong-Liang Huo, Seung-Jae Baik, In-Seok Yeo, Hong-Sik Yoon, Shi-Eun Kim
  • Publication number: 20060220085
    Abstract: Single transistor floating body dynamic random access memory (DRAM) cells include a semiconductor substrate and a barrier layer on the semiconductor substrate and a recess channel transistor on the barrier layer. The recess channel transistor includes a source region of a first conductivity type, a drain region of the first conductivity type spaced apart from the source region and a floating body of a second conductivity type between the barrier layer and the source region and the drain region. The floating body includes a recess region between the source region and the drain region. Methods of forming single transistor floating body dynamic random access memory (DRAM) cells are also provided.
    Type: Application
    Filed: January 19, 2006
    Publication date: October 5, 2006
    Inventors: Zong-Liang Huo, Seung-Jae Baik, In-Seok Yeo, Hong-Sik Yoon, Shi-Eun Kim
  • Publication number: 20060220134
    Abstract: Complementary metal oxide semiconductor (CMOS) static random access memory (SRAM) cells include at least a first inverter formed in a fin-shaped pattern of stacked semiconductor regions of opposite conductivity type. In some of these embodiments, the first inverter includes a first conductivity type (e.g., P-type or N-type) MOS load transistor electrically coupled in series with a second conductivity type (e.g., N-type of P-type) MOS driver transistor. The first inverter is arranged so that active regions of the first conductivity type MOS load transistor and the second conductivity type driver transistor are vertically stacked relative to each other within a first portion of a vertical dual-conductivity semiconductor fin structure. This fin structure is surrounded on at least three sides by a wraparound gate electrode, which is configured to modulate conductivity of both the active regions in response to a gate signal.
    Type: Application
    Filed: March 14, 2006
    Publication date: October 5, 2006
    Inventors: Zong-Liang Huo, Seung-Jae Baik, In-Seok Yeo, Hong-Sik Yoon, Shi-Eun Kim
  • Publication number: 20060197131
    Abstract: In a DRAM device and a method of manufacturing the same, a multiple tunnel junction (MTJ) structure is provided, which includes conductive patterns and nonconductive patterns alternately stacked on each other. The nonconductive patterns have a band gap larger than a band gap of the conductive patterns. A gate insulation layer and a gate electrode are formed on a sidewall of the MTJ structure. A word line is connected with the MTJ structure, and a bit line is connected with one of top and bottom surfaces of the MTJ structure. A capacitor is connected with one of top and bottom surfaces of the MTJ structure that is not connected with the bit line. Current leakage in the DRAM device is reduced and a unit cells may be vertically stacked on the substrate, so a smaller surface area of the substrate is required for the DRAM device.
    Type: Application
    Filed: February 22, 2006
    Publication date: September 7, 2006
    Inventors: Hong-Sik Yoon, In-Seok Yeo, Seung-Jae Baik, Zong-Liang Huo, Shi-Eun Kim