Patents by Inventor Shi Min Xiao

Shi Min Xiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250115900
    Abstract: An example of a biotin-streptavidin cleavage composition includes a formamide reagent and a salt buffer. The formamide reagent is present in the biotin-streptavidin cleavage composition in an amount ranging from about 10% to about 50%, based on a total volume of the biotin-streptavidin cleavage composition. The salt buffer makes up the balance of the biotin-streptavidin cleavage composition. In some examples, the biotin-streptavidin cleavage composition is used to cleave library fragments from a solid support. In other examples, other mechanisms are used to cleave library fragments from a solid support.
    Type: Application
    Filed: November 14, 2024
    Publication date: April 10, 2025
    Inventors: Dan Cao, Jeffrey S. Fisher, Fiona Kaper, Tarun Khurana, Tong Liu, Burak Okumus, Victor Quijano, Clifford Lee Wang, Yir-Shyuan Wu, Shi Min Xiao, Hongxia Xu
  • Patent number: 12146133
    Abstract: An example of a biotin-streptavidin cleavage composition includes a formamide reagent and a salt buffer. The formamide reagent is present in the biotin-streptavidin cleavage composition in an amount ranging from about 10% to about 50%, based on a total volume of the biotin-streptavidin cleavage composition. The salt buffer makes up the balance of the biotin-streptavidin cleavage composition. In some examples, the biotin-streptavidin cleavage composition is used to cleave library fragments from a solid support. In other examples, other mechanisms are used to cleave library fragments from a solid support.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: November 19, 2024
    Assignee: Illumina, Inc.
    Inventors: Dan Cao, Jeffrey S. Fisher, Fiona Kaper, Tarun Kumar Khurana, Tong Liu, Burak Okumus, Victor J. Quijano, Clifford Lee Wang, Yir-Shyuan Wu, Shi Min Xiao, Hongxia Xu
  • Publication number: 20240167020
    Abstract: Analyzing expression of protein-coding variants in cells is provided herein. A method may include replacing a protein coding-region of the DNA in a cell with a donor vector including a variant of the protein-coding region and a first barcode identifying that variant. The cell may generate mRNA including an expression of the variant and an expression of the first barcode. A second barcode corresponding to the cell may be coupled to the mRNA. The mRNA. having the second barcode coupled thereto, may be reverse transcribed into complementary cDNA. The cDNA may be sequenced. The donor vector or cDNA may be sequenced using amplicon sequencing. The donor vector sequence and the cDNA sequence may be correlated to identify the variant and the cell's expression of the variant.
    Type: Application
    Filed: March 8, 2022
    Publication date: May 23, 2024
    Applicant: Illumina, Inc.
    Inventors: Hongxia Xu, Tong Liu, Shi Min Xiao, Dan Cao, Victor Quijano, Kai-How Farh, Mohan Sun
  • Publication number: 20210238589
    Abstract: An example of a biotin-streptavidin cleavage composition includes a formamide reagent and a salt buffer. The formamide reagent is present in the biotin-streptavidin cleavage composition in an amount ranging from about 10% to about 50%, based on a total volume of the biotin-streptavidin cleavage composition. The salt buffer makes up the balance of the biotin-streptavidin cleavage composition. In some examples, the biotin-streptavidin cleavage composition is used to cleave library fragments from a solid support. In other examples, other mechanisms are used to cleave library fragments from a solid support.
    Type: Application
    Filed: February 3, 2021
    Publication date: August 5, 2021
    Inventors: Dan Cao, Jeffrey S. Fisher, Fiona Kaper, Tarun Kumar Khurana, Tong Liu, Burak Okumus, Victor J. Quijano, Clifford Lee Wang, Yir-Shyuan Wu, Shi Min Xiao, Hongxia Xu