Patents by Inventor Shian Yeu Kam

Shian Yeu Kam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8999850
    Abstract: Methods and apparatus for etching materials using tetramethylammonium hydroxide (TMAH) are described. The methods may involve including an additive when applying the TMAH to the material to be etched. The additive may be a gas, and in some situations may be clean dry air. The clean dry air may be provided with the TMAH to minimize or prevent the formation of hillocks in the etched structure. Apparatus for performing the methods are also described.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: April 7, 2015
    Assignee: STMicroelectronics Pte Ltd
    Inventors: Ying Yu, Tien Choy Loh, Shian Yeu Kam
  • Publication number: 20150001075
    Abstract: A bio-fluid sensor is formed by depositing polyimide on a glass substrate. Gold and platinum are deposited on the polyimide and patterned to form fluid sensing electrodes, signal traces, and a temperature sensor. The fluid sensor is then fixed to a flexible tape and peeled off of the glass substrate.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 1, 2015
    Inventors: Olivier Le Neel, Suman Cherian, Calvin Leung, Ravi Shankar, Tien Choy Loh, Shian Yeu Kam
  • Publication number: 20140291829
    Abstract: A micro-sensor device that includes a passivation-protected ASIC module and a micro-sensor module bonded to a patterned cap provides protection for signal conditioning circuitry while allowing one or more sensing elements in the micro-sensor module to be exposed to an ambient environment. According to a method of fabricating the micro-sensor device, the patterned cap can be bonded to the micro-sensor module using a planarizing adhesive that is chemically compatible with the sensing elements. In one embodiment, the adhesive material is the same material used for the dielectric active elements, for example, a photo-sensitive polyimide film.
    Type: Application
    Filed: March 29, 2013
    Publication date: October 2, 2014
    Applicant: STMicroelectronics Pte Ltd.
    Inventors: Olivier Le Neel, Shian-Yeu Kam, Tien-Choy Loh, Ditto Adnan, Tze Wei Dennis Chew
  • Publication number: 20140291677
    Abstract: A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed.
    Type: Application
    Filed: March 29, 2013
    Publication date: October 2, 2014
    Applicant: STMicroelectronics Pte Ltd.
    Inventors: Olivier Le Neel, Ravi Shankar, Suman Cherian, Calvin Leung, Tien-Choy Loh, Shian-Yeu Kam
  • Patent number: 8847335
    Abstract: A micro-electrochemical sensor contains magnetic compounds inserted within a substrate that exert a magnetic force of attraction on paramagnetic beads held in contact with an electrode. The magnetic compounds can be contained within a fluid that is introduced into a void in the substrate. The electrode can be spaced apart from the magnetic compounds by a dielectric multi-layer membrane. During the fabrication process, different layers within the membrane-electrode structure can be tuned to have compressive or tensile stress so as to maintain structural integrity of the membrane, which is thin compared with the size of the void beneath it. During a process of forming the structure of the sensor, the tensile stress in a TiW adhesion layer can be adjusted to offset a composite net compressive stress associated with the dielectric layers of the membrane. The membrane can also be used in forming both the electrode and the void.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: September 30, 2014
    Assignee: STMicroelectronics Pte Ltd.
    Inventors: Shian-Yeu Kam, Tien-Choy Loh, Ying Yu, Fery Riswan, Frederic Sala
  • Publication number: 20140252507
    Abstract: Embodiments of the present disclosure are related to MEMS devices having a suspended membrane that are secured to and spaced apart from a substrate with a sealed cavity therebetween. The membrane includes openings with sidewalls that are closed by a dielectric material. In various embodiments, the cavity between the membrane and the substrate is formed by removing a sacrificial layer through the openings. In one or more embodiments, the openings in the membrane are closed by depositing the dielectric material on the sidewalls of the openings and the upper surface of the membrane.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 11, 2014
    Applicant: STMICROELECTRONICS PTE LTD.
    Inventors: Ravi Shankar, Olivier Le Neel, Shian Yeu Kam, Tien Choy Loh
  • Publication number: 20140061823
    Abstract: A micro-electrochemical sensor contains magnetic compounds inserted within a substrate that exert a magnetic force of attraction on paramagnetic beads held in contact with an electrode. The magnetic compounds can be contained within a fluid that is introduced into a void in the substrate. The electrode can be spaced apart from the magnetic compounds by a dielectric multi-layer membrane. During the fabrication process, different layers within the membrane-electrode structure can be tuned to have compressive or tensile stress so as to maintain structural integrity of the membrane, which is thin compared with the size of the void beneath it. During a process of forming the structure of the sensor, the tensile stress in a TiW adhesion layer can be adjusted to offset a composite net compressive stress associated with the dielectric layers of the membrane. The membrane can also be used in forming both the electrode and the void.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 6, 2014
    Applicant: STMICROELECTRONICS PTE LTD.
    Inventors: Shian-Yeu Kam, Tien-Choy Loh, Ying Yu, Fery Riswan, Frederic Sala
  • Publication number: 20130168355
    Abstract: Methods and apparatus for etching materials using tetramethylammonium hydroxide (TMAH) are described. The methods may involve including an additive when applying the TMAH to the material to be etched. The additive may be a gas, and in in some situations may be clean dry air. The clean dry air may be provided with the TMAH to minimize or prevent the formation of hillocks in the etched structure. Apparatus for performing the methods are also described.
    Type: Application
    Filed: December 29, 2011
    Publication date: July 4, 2013
    Applicant: STMicroelectronics Pte Ltd.
    Inventors: Ying Yu, Tien Choy Loh, Shian Yeu Kam
  • Publication number: 20120165635
    Abstract: Temperature variations in a patient's body can lead to inaccurate glucose readings. To compensate for changes in temperature, the temperature at a glucose sensing site can be sensed using a thermocouple. A compensated glucose level can be determined based on the temperature and the sensed glucose level. A glucose sensing device is described that includes a glucose sensor having a working electrode and a thermocouple having a junction positioned proximate the working electrode, with both the glucose and temperature sensors including the same metals.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 28, 2012
    Applicant: STMicroelectronics Asia Pacific Pte Ltd.
    Inventors: Praveen Kumar Radhakrishnan, Shian Yeu Kam