Patents by Inventor Shibu Abraham

Shibu Abraham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240142695
    Abstract: Improvements to gratings for use in waveguides and methods of producing them are described herein. Deep surface relief gratings (SRGs) may offer many advantages over conventional SRGs and Bragg gratings, an important one being a higher S-diffraction efficiency. In one embodiment, deep SRGs can be implemented as polymer surface relief gratings or evacuated Bragg gratings (EBGs). EBGs can be formed by first recording a holographic polymer dispersed liquid crystal (HPDLC) grating. Removing the liquid crystal from the cured grating provides a polymer surface relief grating. Polymer surface relief gratings have many applications including for use in waveguide-based displays.
    Type: Application
    Filed: January 8, 2024
    Publication date: May 2, 2024
    Applicant: DigiLens Inc.
    Inventors: Jonathan David Waldern, Alastair John Grant, Milan Momcilo Popovich, Shibu Abraham, Baeddan George Hill, Tsung-Jui Ho
  • Patent number: 11899238
    Abstract: Improvements to gratings for use in waveguides and methods of producing them are described herein. Deep surface relief gratings (SRGs) may offer many advantages over conventional SRGs and Bragg gratings, an important one being a higher S-diffraction efficiency. In one embodiment, deep SRGs can be implemented as polymer surface relief gratings or evacuated Bragg gratings (EBGs). EBGs can be formed by first recording a holographic polymer dispersed liquid crystal (HPDLC) grating. Removing the liquid crystal from the cured grating provides a polymer surface relief grating. Polymer surface relief gratings have many applications including for use in waveguide-based displays.
    Type: Grant
    Filed: September 12, 2022
    Date of Patent: February 13, 2024
    Assignee: DigiLens Inc.
    Inventors: Jonathan David Waldern, Alastair John Grant, Milan Momcilo Popovich, Shibu Abraham, Baeddan George Hill, Tsung-Jui Ho
  • Publication number: 20240027670
    Abstract: Disclosed herein are various implementations display devices including phonic crystals. One embodiment includes a heads-up display including: a picture generation unit for projecting collimated light over a field of view; a first waveguide comprising an input grating for coupling the light from the picture generation unit into a total internal reflection path in the first waveguide and an output grating for providing beam expansion and light extraction from the first waveguide; a curved transparent substrate; and a mirror disposed with its reflecting surface facing a waveguide output surface of the first waveguide. The mirror may be configured to reflect light extracted from the first waveguide back through the first waveguide towards the curved transparent substrate. The first waveguide may be configured such that the curved transparent substrate reflects light extracted from the first waveguide towards an eyebox forming a virtual image viewable through the transparent curved substrate from the eyebox.
    Type: Application
    Filed: November 22, 2021
    Publication date: January 25, 2024
    Applicant: DigiLens Inc.
    Inventors: Jonathan David Waldern, Alastair John Grant, Milan Momcilo Popovich, Shibu Abraham
  • Publication number: 20230266512
    Abstract: Disclosed herein is a holographic mixture including nanoparticles used to form gratings through holographic exposure. In various embodiments, exposure of the holographic mixture causes the nanoparticles to diffuse to dark fringe regions which creates nanoparticle rich regions and nanoparticle poor regions. Some embodiments include a multi-layer grating which includes a layer formed through the exposed holographic mixture and another layer directly applied above the exposed holographic mixture. The other layer may also be exposed through a holographic recording beam.
    Type: Application
    Filed: July 14, 2021
    Publication date: August 24, 2023
    Applicant: DigiLens Inc.
    Inventors: Gerald Buxton, Shibu Abraham, Richard E. Bergstrom, Jr., Alastair John Grant, Tsung-Jui Ho, Baeddan George Hill, Michiel Koen Callens, Hua Gu
  • Publication number: 20230078253
    Abstract: Improvements to gratings for use in waveguides and methods of producing them are described herein. Deep surface relief gratings (SRGs) may offer many advantages over conventional SRGs and Bragg gratings, an important one being a higher S-diffraction efficiency. In one embodiment, deep SRGs can be implemented as polymer surface relief gratings or evacuated Bragg gratings (EBGs). EBGs can be formed by first recording a holographic polymer dispersed liquid crystal (HPDLC) grating. Removing the liquid crystal from the cured grating provides a polymer surface relief grating. Polymer surface relief gratings have many applications including for use in waveguide-based displays.
    Type: Application
    Filed: September 12, 2022
    Publication date: March 16, 2023
    Applicant: DigiLens Inc.
    Inventors: Jonathan David Waldern, Alastair John Grant, Milan Momcilo Popovich, Shibu Abraham, Baeddan George Hill, Tsung-Jui Ho
  • Patent number: 11592614
    Abstract: Improvements to gratings for use in waveguides and methods of producing them are described herein. Deep surface relief gratings (SRGs) may offer many advantages over conventional SRGs and Bragg gratings, an important one being a higher S-diffraction efficiency. In one embodiment, deep SRGs can be implemented as polymer surface relief gratings or evacuated Bragg gratings (EBGs). EBGs can be formed by first recording a holographic polymer dispersed liquid crystal (HPDLC) grating. Removing the liquid crystal from the cured grating provides a polymer surface relief grating. Polymer surface relief gratings have many applications including for use in waveguide-based displays.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: February 28, 2023
    Assignee: DigiLens Inc.
    Inventors: Jonathan David Waldern, Alastair John Grant, Milan Momcilo Popovich, Shibu Abraham, Baeddan George Hill, Tsung-Jui Ho
  • Patent number: 11442222
    Abstract: Improvements to gratings for use in waveguides and methods of producing them are described herein. Deep surface relief gratings (SRGs) may offer many advantages over conventional SRGs and Bragg gratings, an important one being a higher S-diffraction efficiency. In one embodiment, deep SRGs can be implemented as polymer surface relief gratings or evacuated Bragg gratings (EBGs). EBGs can be formed by first recording a holographic polymer dispersed liquid crystal (HPDLC) grating. Removing the liquid crystal from the cured grating provides a polymer surface relief grating. Polymer surface relief gratings have many applications including for use in waveguide-based displays.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: September 13, 2022
    Assignee: DigiLens Inc.
    Inventors: Jonathan David Waldern, Alastair John Grant, Milan Momcilo Popovich, Shibu Abraham, Baeddan George Hill, Tsung-Jui Ho
  • Publication number: 20220283378
    Abstract: Improvements to gratings for use in waveguides and methods of producing them are described herein. Deep surface relief gratings (SRGs) may offer many advantages over conventional SRGs, an important one being a higher S-diffraction efficiency. In one embodiment, deep SRGs can be implemented as polymer surface relief gratings or evacuated periodic structures (EPSs). EPSs can be formed by first recording a holographic polymer dispersed liquid crystal (HPDLC) periodic structure. Removing the liquid crystal from the cured periodic structure provides a polymer surface relief grating. Polymer surface relief gratings have many applications including for use in waveguide-based displays.
    Type: Application
    Filed: May 13, 2022
    Publication date: September 8, 2022
    Applicant: DigiLens Inc.
    Inventors: Jonathan David Waldern, Alastair John Grant, Milan Momcilo Popovich, Shibu Abraham, Baeddan George Hill, Tsung-Jui Ho, Michiel Koen Callens, Hyesog Lee
  • Publication number: 20220283376
    Abstract: Improvements to gratings for use in waveguides and methods of producing them are described herein. Deep surface relief gratings (SRGs) may offer many advantages over conventional SRGs, an important one being a higher S-diffraction efficiency. In one embodiment, deep SRGs can be implemented as polymer surface relief gratings or evacuated periodic structures (EPSs). EPSs can be formed by first recording a holographic polymer dispersed liquid crystal (HPDLC) periodic structure. Removing the liquid crystal from the cured periodic structure provides a polymer surface relief grating. Polymer surface relief gratings have many applications including for use in waveguide-based displays.
    Type: Application
    Filed: March 7, 2022
    Publication date: September 8, 2022
    Applicant: DigiLens Inc.
    Inventors: Jonathan David Waldern, Alastair John Grant, Milan Momcilo Popovich, Shibu Abraham, Baeddan George Hill, Tsung-Jui Ho, Michiel Koen Callens, Hyesog Lee
  • Publication number: 20220155623
    Abstract: Improvements to gratings for use in waveguides and methods of producing them are described herein. Deep surface relief gratings (SRGs) may offer many advantages over conventional SRGs and Bragg gratings, an important one being a higher S-diffraction efficiency. In one embodiment, deep SRGs can be implemented as polymer surface relief gratings or evacuated Bragg gratings (EBGs). EBGs can be formed by first recording a holographic polymer dispersed liquid crystal (HPDLC) grating. Removing the liquid crystal from the cured grating provides a polymer surface relief grating. Polymer surface relief gratings have many applications including for use in waveguide-based displays.
    Type: Application
    Filed: January 20, 2022
    Publication date: May 19, 2022
    Applicant: DigiLens Inc.
    Inventors: Jonathan David Waldern, Alastair John Grant, Milan Momcilo Popovich, Shibu Abraham, Baeddan George Hill, Tsung-Jui Ho
  • Publication number: 20210223585
    Abstract: Systems for the manufacturing of waveguide cells in accordance with various embodiments can be configured and implemented in many different ways. In many embodiments, various deposition mechanisms are used to deposit layer(s) of optical recording material onto a transparent substrate. A second transparent substrate can be provided, and the three layers can be laminated to form a waveguide cell. Suitable optical recording material can vary widely depending on the given application. In some embodiments, the optical recording material deposited has a similar composition throughout the layer. In a number of embodiments, the optical recording material spatially varies in composition, allowing for the formation of optical elements with varying characteristics. Regardless of the composition of the optical recording material, any method of placing or depositing the optical recording material onto a substrate can be utilized.
    Type: Application
    Filed: December 29, 2020
    Publication date: July 22, 2021
    Applicant: DigiLens Inc.
    Inventors: Jonathan David Waldern, Ratson Morad, Alastair John Grant, Sihui He, Shibu Abraham, Milan Momcilo Popovich
  • Patent number: 11061837
    Abstract: In an aspect of the disclosure, an apparatus, a computer-readable medium, and a method are provided. The apparatus may be a service processor. The service processor receives, a first command or data of a UBM protocol from a UBM host running on a host of the service processor. The UBM protocol is a first protocol supported by the service processor. The first command or data instructs a backplane controller of the host to perform a first task. The service processor generates a second command or data of a second protocol supported by the service processor. The second command or data instructs the backplane controller to perform the first task. The service processor sends the second command or data to the backplane controller.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: July 13, 2021
    Assignee: AMERICAN MEGATRENDS INTERNATIONAL, LLC
    Inventors: Timothy Bouda, Umasankar Mondal, Shibu Abraham
  • Publication number: 20210063634
    Abstract: Improvements to gratings for use in waveguides and methods of producing them are described herein. Deep surface relief gratings (SRGs) may offer many advantages over conventional SRGs and Bragg gratings, an important one being a higher S-diffraction efficiency. In one embodiment, deep SRGs can be implemented as polymer surface relief gratings or evacuated Bragg gratings (EBGs). EBGs can be formed by first recording a holographic polymer dispersed liquid crystal (HPDLC) grating. Removing the liquid crystal from the cured grating provides a polymer surface relief grating. Polymer surface relief gratings have many applications including for use in waveguide-based displays.
    Type: Application
    Filed: August 28, 2020
    Publication date: March 4, 2021
    Applicant: DigiLens Inc.
    Inventors: Jonathan David Waldern, Alastair John Grant, Milan Momcilo Popovich, Shibu Abraham, Baeddan George Hill
  • Publication number: 20200271973
    Abstract: Holographic polymer dispersed liquid crystal material systems in accordance with various embodiments of the invention are illustrated. One embodiment includes a holographic polymer dispersed liquid crystal formulation, including monomers, photoinitiators, and a liquid crystal mixture including terphenyl compounds and non-terphenyl compounds, the liquid crystal mixture having a ratio of at least 1:10 by weight percentage of the terphenyl compounds to the non-terphenyl compounds, wherein the photoinitiators are configured to facilitate a photopolymerization induced phase separation process of the monomers and the liquid crystal mixture. In another embodiment, the liquid crystal mixture further includes pyrimidine compounds, and wherein the liquid crystal mixture has a ratio of at least 1:10 by weight percentage of the terphenyl compounds and pyrimidine compounds to the non-terphenyl compounds. In a further embodiment, the ratio of the terphenyl compounds to the non-terphenyl compounds is at least 1.5:10.
    Type: Application
    Filed: February 24, 2020
    Publication date: August 27, 2020
    Applicant: DigiLens Inc.
    Inventors: Jonathan David Waldern, Shibu Abraham
  • Publication number: 20200247017
    Abstract: Systems and methods for compensating for nonuniform surface topography features in accordance with various embodiments of the invention are illustrated. One embodiment includes a method for manufacturing waveguide cells, the method including providing a waveguide including first and second substrates and a layer of optical recording material, and applying a surface forming process to at least one external surface of the first and second substrates. In another embodiment, applying the surface forming process includes applying a forming material coating to the at least one external surface, providing a forming element having a forming surface, bringing the forming element in physical contact with the forming material coating, curing the forming material coating while it is in contact with the forming element, and releasing the forming material coating from the forming element.
    Type: Application
    Filed: February 5, 2020
    Publication date: August 6, 2020
    Applicant: DigiLens Inc.
    Inventors: Jonathan David Waldern, Shibu Abraham, Milan Momcilo Popovich
  • Publication number: 20200065273
    Abstract: In an aspect of the disclosure, an apparatus, a computer-readable medium, and a method are provided. The apparatus may be a service processor. The service processor receives, a first command or data of a UBM protocol from a UBM host running on a host of the service processor. The UBM protocol is a first protocol supported by the service processor. The first command or data instructs a backplane controller of the host to perform a first task. The service processor generates a second command or data of a second protocol supported by the service processor. The second command or data instructs the backplane controller to perform the first task. The service processor sends the second command or data to the backplane controller.
    Type: Application
    Filed: August 21, 2019
    Publication date: February 27, 2020
    Inventors: Timothy Bouda, Umasankar Mondal, Shibu Abraham
  • Publication number: 20190212597
    Abstract: Photopolymerizable materials and in particular holographic polymer dispersed liquid crystal materials and processes for fabricating holographic waveguide devices from such materials are provided. Materials and formulations of photopolymerizable materials are sufficiently low haze to allow for the omission of adhesives from within the cell of the holographic waveguide devices. The photopolymerizable materials are used in association with methods of manufacturing holographic waveguides such that photopolymerizable materials may be used as an adhesive material.
    Type: Application
    Filed: January 8, 2019
    Publication date: July 11, 2019
    Applicant: DigiLens, Inc.
    Inventors: Jonathan David Waldern, Shibu Abraham
  • Publication number: 20190212589
    Abstract: Photopolymerizable materials and in particular holographic polymer dispersed liquid crystal materials and processes for fabricating holographic waveguide devices from such materials are provided. Materials and formulations of photopolymerizable materials incorporate a mixture of LCs and monomer (and other components including: photoinitiator dye, coinitiators, surfactant), which under holographic exposure undergo phase separation to provide a grating in which at least one of the LCs and at least one of the monomers forms a first HPDLC morphology that provides a P polarization response and at least one of the LCs and at least one of the monomers forms a second HPDLC morphology that provides a S polarization response.
    Type: Application
    Filed: January 8, 2019
    Publication date: July 11, 2019
    Applicant: DigiLens, Inc.
    Inventors: Jonathan David Waldern, Shibu Abraham
  • Publication number: 20190212596
    Abstract: HPDLC material systems can be formulated in many different ways depending on the application. The HPDLC formulation can include a reactive monomer liquid crystal mixture (“RMLCM”). An RMLCM can include monomer acrylates, multi-functional acrylates, a cross-linking agent, a photo-initiator, and a liquid crystal (“LC”). The mixture (often referred to as syrup) frequently also includes a surfactant. One embodiment includes a reactive monomer liquid crystal mixture material including at least one liquid crystal, a photoinitiator dye, a coinitiators, and photopolymerizable monomers including at least one mono-functional monomer and at least one bi-functional monomer. In some embodiment, the bi-functional monomers accounts for at least 10 weight percent of the reactive monomer liquid crystal mixture material and the at least one mono-functional monomer accounts for at least 30 percent of the reactive monomer liquid crystal mixture material.
    Type: Application
    Filed: June 13, 2018
    Publication date: July 11, 2019
    Applicant: DigiLens, Inc.
    Inventors: Jonathan David Waldern, Shibu Abraham
  • Publication number: 20190212588
    Abstract: Systems for the manufacturing of waveguide cells in accordance with various embodiments can be configured and implemented in many different ways. In many embodiments, various deposition mechanisms are used to deposit layer(s) of optical recording material onto a transparent substrate. A second transparent substrate can be provided, and the three layers can be laminated to form a waveguide cell. Suitable optical recording material can vary widely depending on the given application. In some embodiments, the optical recording material deposited has a similar composition throughout the layer. In a number of embodiments, the optical recording material spatially varies in composition, allowing for the formation of optical elements with varying characteristics. Regardless of the composition of the optical recording material, any method of placing or depositing the optical recording material onto a substrate can be utilized.
    Type: Application
    Filed: November 28, 2018
    Publication date: July 11, 2019
    Applicant: DigiLens, Inc.
    Inventors: Jonathan David Waldern, Ratson Morad, Alastair John Grant, Sihui He, Shibu Abraham, Milan Momcilo Popovich