Patents by Inventor Shichan Chiang

Shichan Chiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240055707
    Abstract: A method of forming a brazed joint is described. The method includes pressing a non-molybdenum component, such as a cross pin of a battery case assembly, against a molybdenum component, such as a terminal pin of the battery case assembly, and applying one or more electrical pulses to form an interface liquid layer between the components that cools to form the brazed joint. At least one of the electrical pulses has a constant voltage over a pulse time. A contact resistance between the components can decrease during the pulse time, and thus, the constant voltage can cause an uncontrolled electrical current of the electrical pulse to increase. The increasing electrical current heats the components sufficiently to form the interface liquid layer having a predetermined thickness that provides a required bend strength. Removal of surface oxides provide consistent mechanical strength for this joint. Other embodiments are also described and claimed.
    Type: Application
    Filed: October 26, 2023
    Publication date: February 15, 2024
    Inventors: Shichan Chiang, Christopher Hallmark, Michael Erickson, Kurt Erickson, Nicholas Hamor, Jeffrey Armstrong, Philip Edward Poole, Nathan Messerich
  • Patent number: 11831030
    Abstract: A method of forming a brazed joint is described. The method includes pressing a non-molybdenum component, such as a cross pin of a battery case assembly, against a molybdenum component, such as a terminal pin of the battery case assembly, and applying one or more electrical pulses to form an interface liquid layer between the components that cools to form the brazed joint. At least one of the electrical pulses has a constant voltage over a pulse time. A contact resistance between the components can decrease during the pulse time, and thus, the constant voltage can cause an uncontrolled electrical current of the electrical pulse to increase. The increasing electrical current heats the components sufficiently to form the interface liquid layer having a predetermined thickness that provides a required bend strength. Removal of surface oxides provide consistent mechanical strength for this joint. Other embodiments are also described and claimed.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: November 28, 2023
    Assignee: PACESETTER, INC.
    Inventors: Shichan Chiang, Christopher Hallmark, Michael Erickson, Kurt Erickson, Nicholas Hamor, Jeffrey Armstrong, Philip Edward Poole, Nathan Messerich
  • Patent number: 11534606
    Abstract: Disclosed herein is an implantable electronic device for use with an implantable medical lead. The implantable electronic device includes a housing and a header connector assembly coupled to the housing and adapted to receive the proximal lead end of the implantable medical lead. The header connector assembly includes a connector assembly including a connector, a feedthrough extending through the housing, and a conductor coupling the feedthrough to the connector. The conductor includes a first conductor segment and a second conductor segment offset from the first conductor segment and each of the first conductor segment and the second conductor segment are resistance welded to the connector.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: December 27, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Shichan Chiang, Evan Sheldon, Armando M. Cappa
  • Publication number: 20200316374
    Abstract: Disclosed herein is an implantable electronic device for use with an implantable medical lead. The implantable electronic device includes a housing and a header connector assembly coupled to the housing and adapted to receive the proximal lead end of the implantable medical lead. The header connector assembly includes a connector assembly including a connector, a feedthrough extending through the housing, and a conductor coupling the feedthrough to the connector. The conductor includes a first conductor segment and a second conductor segment offset from the first conductor segment and each of the first conductor segment and the second conductor segment are resistance welded to the connector.
    Type: Application
    Filed: June 15, 2020
    Publication date: October 8, 2020
    Applicant: Pacesetter, Inc.
    Inventors: Shichan Chiang, Evan Sheldon, Armando M. Cappa
  • Patent number: 10751528
    Abstract: Disclosed herein is an implantable electronic device for use with an implantable medical lead. The implantable electronic device includes a housing and a header connector assembly coupled to the housing and adapted to receive the proximal lead end of the implantable medical lead. The header connector assembly includes a connector assembly including a connector, a feedthru extending through the housing, and a conductor coupling the feedthru to the connector. The conductor includes a first conductor segment and a second conductor segment offset from the first conductor segment and each of the first conductor segment and the second conductor segment are resistance welded to the connector.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: August 25, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Shichan Chiang, Evan Sheldon, Armando M. Cappa
  • Publication number: 20190363313
    Abstract: A method of forming a brazed joint is described. The method includes pressing a non-molybdenum component, such as a cross pin of a battery case assembly, against a molybdenum component, such as a terminal pin of the battery case assembly, and applying one or more electrical pulses to form an interface liquid layer between the components that cools to form the brazed joint. At least one of the electrical pulses has a constant voltage over a pulse time. A contact resistance between the components can decrease during the pulse time, and thus, the constant voltage can cause an uncontrolled electrical current of the electrical pulse to increase. The increasing electrical current heats the components sufficiently to form the interface liquid layer having a predetermined thickness that provides a required bend strength. Removal of surface oxides provide consistent mechanical strength for this joint. Other embodiments are also described and claimed.
    Type: Application
    Filed: May 20, 2019
    Publication date: November 28, 2019
    Inventors: Shichan Chiang, Christopher Hallmark, Michael Erickson, Kurt Erickson, Nicholas Hamor, Jeffrey Armstrong, Philip Edward Poole, Nathan Messerich
  • Publication number: 20190117962
    Abstract: Disclosed herein is an implantable electronic device for use with an implantable medical lead. The implantable electronic device includes a housing and a header connector assembly coupled to the housing and adapted to receive the proximal lead end of the implantable medical lead. The header connector assembly includes a connector assembly including a connector, a feedthru extending through the housing, and a conductor coupling the feedthru to the connector. The conductor includes a first conductor segment and a second conductor segment offset from the first conductor segment and each of the first conductor segment and the second conductor segment are resistance welded to the connector.
    Type: Application
    Filed: October 25, 2017
    Publication date: April 25, 2019
    Inventors: Shichan Chiang, Evan Sheldon, Armando M. Cappa
  • Publication number: 20160243352
    Abstract: The present disclosure provides electrode assemblies. An electrode assembly includes a wire and a substantially cylindrical electrode including a radially inner surface, a radially outer surface, and a strip defined by at least one slot extending from the radially inner surface to the radially outer surface, wherein the wire is welded to the radially outer surface of the strip.
    Type: Application
    Filed: February 23, 2015
    Publication date: August 25, 2016
    Inventors: Aaron Raines, Shichan Chiang, Jerome Boogaard, Serdar Unal