Patents by Inventor Shide Cheng

Shide Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8018682
    Abstract: A magnetic disk is protected by a bilayer. The bilayer is formed as an adhesion enhancing underlayer and a protective diamond-like carbon (DLC) overlayer. The underlayer is formed of an aluminum or alloyed aluminum oxynitride, having the general formula AlOxNy or MezAlOxNy where Mez symbolizes Tiz, Siz or Crz and where x, y and z can be varied within the formation process. By adjusting the values of x and y the adhesion underlayer contributes to such qualities of the protective bilayer as stress compensation, chemical and mechanical stability and low electrical conductivity. Various methods of forming the underlayer are provided, including reactive ion sputtering, plasma assisted chemical vapor deposition, pulsed laser deposition and plasma immersion ion implantation.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: September 13, 2011
    Assignee: SAE Magnetics (HK) Ltd.
    Inventors: Shide Cheng, Zhu Feng, Ellis T. Cha
  • Patent number: 8014104
    Abstract: A protective bilayer on a magnetic read/write head or magnetic disk is formed as an adhesion enhancing and corrosion resistant underlayer and a protective diamond-like carbon (DLC) overlayer. The underlayer is a transition metal oxynitride, having the general formula MeOxNy, where Me represents a single element or an alloy of the following transition metal elements: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W, here x can be within the range between 0 and 3 and y is in the range between approximately 0 and 2. Adjusting the values of x and y contributes to such qualities of the protective bilayer as stress compensation, chemical and mechanical stability and low electrical conductivity. Methods of forming the adhesion layer, include reactive ion sputtering, plasma assisted chemical vapor deposition, pulsed laser deposition and plasma immersion ion implantation.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: September 6, 2011
    Assignee: SAE Magnetics (HK) Ltd.
    Inventors: Shide Cheng, Zhu Feng, Ellis T. Cha
  • Patent number: 8009387
    Abstract: A method for forming a protective bilayer on a magnetic read/write head or magnetic disk. The bilayer is formed as an adhesion enhancing underlayer and a protective diamond-like carbon (DLC) overlayer. The underlayer is formed of an aluminum or alloyed aluminum oxynitride, having the general formula AlOxNy or MezAlOxNy where Mez symbolizes Tiz, Siz or Crz and where x, y and z can be varied within the formation process. By adjusting the values of x and y the adhesion underlayer contributes to such qualities of the protective bilayer as stress compensation, chemical and mechanical stability and low electrical conductivity. Various methods of forming the underlayer are provided, including reactive ion sputtering, plasma assisted chemical vapor deposition, pulsed laser deposition and plasma immersion ion implantation.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: August 30, 2011
    Assignee: SAE Magnetics (HK) Ltd.
    Inventors: Shide Cheng, Zhu Feng, Ellis T. Cha
  • Publication number: 20100307911
    Abstract: A method for forming a protective bilayer on a magnetic read/write head or magnetic disk. The bilayer is formed as an adhesion enhancing underlayer and a protective diamond-like carbon (DLC) overlayer. The underlayer is formed of an aluminum or alloyed aluminum oxynitride, having the general formula AlOxNy or MezAlOxNy where Mez symbolizes Tiz, Siz or Crz and where x, y and z can be varied within the formation process. By adjusting the values of x and y the adhesion underlayer contributes to such qualities of the protective bilayer as stress compensation, chemical and mechanical stability and low electrical conductivity. Various methods of forming the underlayer are provided, including reactive ion sputtering, plasma assisted chemical vapor deposition, pulsed laser deposition and plasma immersion ion implantation.
    Type: Application
    Filed: August 2, 2010
    Publication date: December 9, 2010
    Inventors: Shide Cheng, Zhu Feng, Ellis T. Cha
  • Publication number: 20100310904
    Abstract: A magnetic disk is protected by a bilayer. The bilayer is formed as an adhesion enhancing underlayer and a protective diamond-like carbon (DLC) overlayer. The underlayer is formed of an aluminum or alloyed aluminum oxynitride, having the general formula AlOxNy or MezAlOxNy where Mez symbolizes Tiz, Siz or Crz and where x, y and z can be varied within the formation process. By adjusting the values of x and y the adhesion underlayer contributes to such qualities of the protective bilayer as stress compensation, chemical and mechanical stability and low electrical conductivity. Various methods of forming the underlayer are provided, including reactive ion sputtering, plasma assisted chemical vapor deposition, pulsed laser deposition and plasma immersion ion implantation.
    Type: Application
    Filed: August 2, 2010
    Publication date: December 9, 2010
    Inventors: Shide Cheng, Zhu Feng, Ellis T. Cha
  • Patent number: 7782569
    Abstract: A method for forming a protective bilayer on a magnetic read/write head or magnetic disk. The bilayer is formed as an adhesion enhancing underlayer and a protective diamond-like carbon (DLC) overlayer. The underlayer is formed of an aluminum or alloyed aluminum oxynitride, having the general formula AlOxNy or MezAlOxNy where Mez symbolizes Tiz, Siz or Crz and where x, y and z can be varied within the formation process. By adjusting the values of x and y the adhesion underlayer contributes to such qualities of the protective bilayer as stress compensation, chemical and mechanical stability and low electrical conductivity. Various methods of forming the underlayer are provided, including reactive ion sputtering, plasma assisted chemical vapor deposition, pulsed laser deposition and plasma immersion ion implantation.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: August 24, 2010
    Assignee: SAE Magnetics (HK) Ltd.
    Inventors: Shide Cheng, Zhu Feng, Ellis T. Cha
  • Publication number: 20080231992
    Abstract: A method for forming a protective bilayer on a magnetic read/write head or magnetic disk. The bilayer is formed as an adhesion enhancing and corrosion resistant underlayer and a protective diamond-like carbon (DLC) overlayer. The underlayer is formed of transition metal oxynitride, having the general formula MeOxNy, where Me represents a single element or an alloy formed with two or more of the following transition metal elements: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W, here x can be within the range between 0 and 3 and y is in the range between approximately 0 and 2 By adjusting the values of x and y the adhesion underlayer contributes to such qualities of the protective bilayer as stress compensation, chemical and mechanical stability and low electrical conductivity. Various methods of forming the adhesion layer are provided, including reactive ion sputtering, plasma assisted chemical vapor deposition, pulsed laser deposition and plasma immersion ion implantation.
    Type: Application
    Filed: March 21, 2007
    Publication date: September 25, 2008
    Inventors: Shide Cheng, Zhu Feng, Ellis T. Cha
  • Publication number: 20080187781
    Abstract: A method for forming a protective bilayer on a substrate that is a magnetic read/write head or a magnetic recording medium. The bilayer is formed as an adhesion enhancing and corrosion resistant underlayer and a protective diamond-like carbon (DLC) overlayer. The underlayer is formed of silicon oxynitride, having the general formula SiOxNy, where x can be within the range between 0.02 and 2.0 and y is in the range between approximately 0.01 and 1.5. By adjusting the values of x and y the underlayer contributes to such qualities as strong chemical bonding between the substrate and the DLC, wear and corrosion resistance, chemical and mechanical stability and low electrical conductivity. The underlayer may be formed by various methods such as reactive ion sputtering, plasma assisted chemical vapor deposition, reactive pulsed laser deposition, plasma surface treatment and plasma immersion ion implantation.
    Type: Application
    Filed: February 5, 2007
    Publication date: August 7, 2008
    Inventors: Shide Cheng, Zhu Feng, Ellis T. Cha
  • Publication number: 20080176108
    Abstract: A method for forming a protective bilayer on a magnetic read/write head or magnetic disk. The bilayer is formed as an adhesion enhancing underlayer and a protective diamond-like carbon (DLC) overlayer. The underlayer is formed of an aluminum or alloyed aluminum oxynitride, having the general formula AlOxNy or MezAlOxNy where Mez symbolizes Tiz, Siz or Crz and where x, y and z can be varied within the formation process. By adjusting the values of x and y the adhesion underlayer contributes to such qualities of the protective bilayer as stress compensation, chemical and mechanical stability and low electrical conductivity. Various methods of forming the underlayer are provided, including reactive ion sputtering, plasma assisted chemical vapor deposition, pulsed laser deposition and plasma immersion ion implantation.
    Type: Application
    Filed: January 18, 2007
    Publication date: July 24, 2008
    Inventors: Shide Cheng, Zhu Feng, Ellis T. Cha
  • Patent number: 7323802
    Abstract: A surface acoustic wave device that can operate in alternate-phase mode and single-phase mode, and thus generate surface acoustic waves at two different frequencies. The device is based on a piezoelectric film deposited on an elastic substrate, and includes an electrode layer patterned as two interdigital electrodes and electrical source (2). The device is operated in alternate-phase mode by connecting the two electrodes to different ends of an electrical source (22). The device is operated in single-phase mode by connecting the two electrodes to the same end of an electrical source.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: January 29, 2008
    Assignees: Acoustical Technologies Singapore Pte. Ltd., Nanyang Technological University
    Inventors: Chan Hin Kam, Yee Loy Lam, Yan Zhou, Shide Cheng, Woon Siong Gan
  • Patent number: 7303339
    Abstract: Optical modules and methods for making optical modules are described. In one embodiment, an optical module includes a substrate assembly including a photonic chip mounting region, and a groove extending towards the photonic chip mounting region. A waveguide is disposed within the groove. A plurality of spacers is on the chip mounting region, each spacer having a predetermined height. A photonic chip is placed on the plurality of spacers and above the chip mounting region, and an optical coupler is between the photonic chip and the waveguide.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: December 4, 2007
    Assignee: Phosistor Technologies, Inc.
    Inventors: Yan Zhou, Shide Cheng, Seng-Tiong Ho
  • Patent number: 6879757
    Abstract: In a connection between an optical fiber or optical fiber array and an integrated optical waveguide or integrated optical waveguide array mounted or fabricated on a grooved substrate, an end face of an optical fiber array has a first facet and a second facet. The first facet has an inclination angle substantially equal to the inclination angle of an end wall of the substrate groove; the second facet has an inclination angle substantially equal to the inclination angle of the end face of the integrated optical waveguide. When the optical fiber array is mounted on the grooved substrate, each of the fibers rests in one of the substrate grooves. The first facet of each optical fiber end face is aligned with the end wall of the groove in which it rests, and the second facet is aligned with the end face of the integrated optical waveguide.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: April 12, 2005
    Assignee: Phosistor Technologies, Inc.
    Inventors: Yan Zhou, Shide Cheng, Seng-Tiong Ho
  • Publication number: 20040183397
    Abstract: A surface acoustic wave device which can generate surface acoustic waves in at least two directions. The device includes a piezoelectric layer, an elastic substrate and an electrode layer which includes two arrays 23 and 24 of linear electrodes with gap regions 25 located between the electrodes. Alternatively, the electrode layer may be patterned as an array of concentric annular strips for the generation of annular surface acoustic waves.
    Type: Application
    Filed: September 22, 2003
    Publication date: September 23, 2004
    Inventors: Chan Hin Kam, Yee Loy Lam, Yan Zhou, Shide Cheng, Woon Siong Gan
  • Publication number: 20040056561
    Abstract: A surface acoustic wave device that can operate in alternate-phase mode and single-phase mode, and thus generate surface acoustic waves at two different frequencies. The device is based on a piezoelectric film deposited on an elastic substrate, and includes an electrode layer patterned as two interdigital electrodes and electrical source (2). The device is operated in alternate-phase mode by connecting the two electrodes to different ends of an electrical source (22). The device is operated in single-phase mode by connecting the two electrodes to the same end of an electrical source.
    Type: Application
    Filed: September 22, 2003
    Publication date: March 25, 2004
    Inventors: Chan Hin Kam, Yee Loy Lam, Yan Zhou, Shide Cheng, Woon Siong Gan
  • Publication number: 20040042729
    Abstract: Optical modules and methods for making optical modules are described. In one embodiment, an optical module includes a substrate assembly including a photonic chip mounting region, and a groove extending towards the photonic chip mounting region. A waveguide is disposed within the groove. A plurality of spacers is on the chip mounting region, each spacer having a predetermined height. A photonic chip is placed on the plurality of spacers and above the chip mounting region, and an optical coupler is between the photonic chip and the waveguide.
    Type: Application
    Filed: August 28, 2003
    Publication date: March 4, 2004
    Applicant: Phosistor Technologies, Inc.
    Inventors: Yan Zhou, Shide Cheng, Seng-Tiong Ho