Patents by Inventor Shigeaki Sumiya

Shigeaki Sumiya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9478650
    Abstract: Provided is a semiconductor device in which a reverse leakage current is suppressed and the mobility of a two-dimensional electron gas is high. A semiconductor device includes: an epitaxial substrate in which a group of group-III nitride layers are laminated on a base substrate such that a (0001) crystal plane is substantially in parallel with a substrate surface; and a Schottky electrode. The epitaxial substrate includes: a channel layer made of a first group-III nitride having a composition of Inx1Aly1Gaz1N (x1+y1+z1=1, z1>0); a barrier layer made of a second group-III nitride having a composition of Inx2Aly2N (x2+y2=1, x2>0, y2>0); an intermediate layer made of GaN adjacent to the barrier layer; and a cap layer made of AlN and adjacent to the intermediate layer. A Schottky electrode is bonded to the cap layer.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: October 25, 2016
    Assignee: NGK Insulators, Ltd.
    Inventors: Tomohiko Sugiyama, Sota Maehara, Shigeaki Sumiya, Mitsuhiro Tanaka
  • Patent number: 9090993
    Abstract: Provided is a crack-free epitaxial substrate with reduced warping, in which a silicon substrate is used as a base substrate. The epitaxial substrate includes a (111) single crystal Si substrate, a superlattice layer group in which a plurality of superlattice layers are laminated, and a crystal layer. The superlattice layer is formed of a first unit layer and a second unit layer made of group-III nitrides having different compositions being alternately and repeatedly laminated. The crystal layer is made of a group-III nitride and formed above the base substrate so as to be positioned at an upper side of the superlattice layer group relative to the base substrate. The superlattice layer group has a compressive strain contained therein. In the superlattice layer group, the more distant the superlattice layer is from the base substrate, the greater the compressive strain becomes.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: July 28, 2015
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Shigeaki Sumiya, Mikiya Ichimura, Tomohiko Sugiyama, Mitsuhiro Tanaka
  • Patent number: 8969880
    Abstract: Provided is a crack-free epitaxial substrate having a small amount of warping, in which a silicon substrate is used as a base substrate. The epitaxial substrate includes: a (111) single crystal Si substrate and a buffer layer formed of a plurality of lamination units being continuously laminated. The lamination unit includes: a composition modulation layer formed of a first and a second unit layer having different compositions being alternately and repeatedly laminated such that a compressive strain exists therein; a termination layer formed on an uppermost portion of the composition modulation layer, the termination layer acting to maintain the compressive strain existing in the composition modulation layer; and a strain reinforcing layer formed on the termination layer, the strain reinforcing layer acting to enhance the compressive strain existing in the composition modulation layer.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: March 3, 2015
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Shigeaki Sumiya, Mikiya Ichimura, Sota Maehara, Mitsuhiro Tanaka
  • Patent number: 8946723
    Abstract: Provided is a crack-free epitaxial substrate having excellent breakdown voltage properties in which a silicon substrate is used as a base. The epitaxial substrate includes a (111) single crystal Si substrate and a buffer layer including a plurality of first lamination units. Each of those units includes a composition modulation layer formed of a first composition layer made of AlN and a second composition layer made of AlxGa1-xN being alternately laminated, and a first intermediate layer made of AlyGa1-yN (0?y<1). The relationship of x(1)?x(2)? . . . ?x(n?1)?x(n) and x(1)>x(n) is satisfied, where n represents the number of laminations of each of the first and second composition layers, and x(i) represents the value of x in i-th one of the second composition layers as counted from the base substrate side. The second composition layer is coherent to the first composition layer, and the first intermediate layer is coherent to the composition modulation layer.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: February 3, 2015
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Shigeaki Sumiya, Mikiya Ichimura, Sota Maehara, Mitsuhiro Tanaka
  • Publication number: 20140361337
    Abstract: Provided is a lattice-matched HEMT device, which is a HEMT device having high reverse breakdown voltage while securing two-dimensional electron gas concentration in a practical range. In producing a semiconductor device by forming a channel layer made of GaN on a base substrate such as an AlN template substrate or a substrate that includes a Si single crystal base material as a base, forming a barrier layer made of a group-III nitride having a composition of InxAlyGazN (x+y+z=1, 0?z?0.3) on the channel layer, and forming a source electrode, a drain electrode, and a gate electrode on the barrier layer, an In mole fraction x, a Ga mole fraction z, and a thickness d of the barrier layer satisfy a predetermined range.
    Type: Application
    Filed: August 22, 2014
    Publication date: December 11, 2014
    Applicant: NGK INSULATORS, LTD.
    Inventors: Tomohiko Sugiyama, Shigeaki Sumiya, Sota Maehara, Mitsuhiro Tanaka
  • Patent number: 8890208
    Abstract: Provided is an epitaxial substrate capable of manufacturing a HEMT device that has excellent two-dimensional electron gas characteristics and is capable of performing normally-off operation. A channel layer is formed of a first group III nitride represented by Inx1Aly1Gaz1N (x1+y1+z1=1) so as to have a composition in a range determined by x1=0 and 0?y1?0.3. A barrier layer is formed of a second group III nitride represented by Inx2Aly2Gaz2N (x2+y2+z2=1) so as to have a composition, in a ternary phase diagram with InN, AlN and GaN being vertices, in a range surrounded by four straight lines determined in accordance with the composition (AlN molar fraction) of the first group III nitride and to have a thickness of 5 nm or less.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: November 18, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Yoshitaka Kuraoka, Shigeaki Sumiya, Mitsuhiro Tanaka
  • Patent number: 8872226
    Abstract: Provided is an epitaxial substrate having excellent two-dimensional electron gas characteristics and reduced internal stress due to strains. A channel layer is formed of a first group III nitride represented by Inx1Aly1Gaz1N (x1+y1+z1=1) so as to have a composition in a range determined by x1=0 and 0?y1?0.3. A barrier layer is formed of a second group III nitride represented by Inx2Aly2Gaz2N (x2+y2+z2=1) so as to have a composition, in a ternary phase diagram with InN, AlN and GaN being vertices, in a range surrounded by five straight lines determined in accordance with the composition (AlN molar fraction) of the first group III nitride.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: October 28, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Yoshitaka Kuraoka, Shigeaki Sumiya, Mitsuhiro Tanaka
  • Patent number: 8853828
    Abstract: An epitaxial substrate, in which a group of group-III nitride layers is formed on a single-crystal silicon substrate so that a crystal plane is approximately parallel to a substrate surface, comprises: a first group-III nitride layer formed of AlN on the base substrate; a second group-III nitride layer formed of InxxAlyyGazzN (xx+yy+zz=1, 0?xx?1, 0<yy?1 and 0<zz?1) on the first group-III nitride layer; and at least one third group-III nitride layer epitaxially-formed on the second group-III nitride layer, wherein: the first group-III nitride layer is a layer containing multiple defects including at least one type of a columnar crystal, a granular crystal, a columnar domain and a granular domain; and an interface between the first group-III nitride layer and the second group-III nitride layer is a three-dimensional asperity surface.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: October 7, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Shigeaki Sumiya, Makoto Miyoshi, Tomohiko Sugiyama, Mikiya Ichimura, Yoshitaka Kuraoka, Mitsuhiro Tanaka
  • Publication number: 20140042451
    Abstract: Provided is a semiconductor device in which a reverse leakage current is suppressed and the mobility of a two-dimensional electron gas is high. A semiconductor device includes: an epitaxial substrate in which a group of group-III nitride layers are laminated on a base substrate such that a (0001) crystal plane is substantially in parallel with a substrate surface; and a Schottky electrode. The epitaxial substrate includes: a channel layer made of a first group-III nitride having a composition of Inx1Aly1Gaz1N (x1+y1+z1=1, z1>0); a barrier layer made of a second group-III nitride having a composition of Inx2Aly2N (x2+y2=1, x2>0, y2>0); an intermediate layer made of GaN adjacent to the barrier layer; and a cap layer made of AlN and adjacent to the intermediate layer. A Schottky electrode is bonded to the cap layer.
    Type: Application
    Filed: April 2, 2013
    Publication date: February 13, 2014
    Applicant: NGK Insulators, Ltd.
    Inventors: Tomohiko SUGIYAMA, Sota MAEHARA, Shigeaki SUMIYA, Mitsuhiro TANAKA
  • Patent number: 8648351
    Abstract: Provided is a crack-free epitaxial substrate having excellent breakdown voltage properties in which a silicon substrate is used as a base substrate thereof. The epitaxial substrate includes: a (111) single crystal Si substrate and a buffer layer including a plurality of composition modulation layers each formed of a first composition layer made of AlN and a second composition layer made of AlxGa1-xN (0?x<1) being alternately laminated. The relationship of x(1)?x(2)? . . . ?x(n?1)?x(n) and x(1)>x(n) is satisfied, where n represents the number of laminations of each of the first and the second composition layer, and x(i) represents the value of x in i-th one of the second composition layers as counted from the base substrate side. Each of the second composition layers is formed so as to be in a coherent state relative to the first composition layer.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: February 11, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Shigeaki Sumiya, Mikiya Ichimura, Sota Maehara, Mitsuhiro Tanaka
  • Patent number: 8598626
    Abstract: Provided is an epitaxial substrate for semiconductor device that is capable of achieving a semiconductor device having high reliability in reverse characteristics of schottky junction. An epitaxial substrate for semiconductor device obtained by forming, on a base substrate, a group of group III nitride layers by lamination such that a (0001) crystal plane of each layer is approximately parallel to a substrate surface includes: a channel layer formed of a first group III nitride having a composition of Inx1Aly1Gaz1N (x1+y1+z1=1, z1>0); and a barrier layer formed of a second group III nitride having a composition of Inx2Aly2N (x2+y2=1, x2>0, y2>0), wherein the second group III nitride is a short-range-ordered mixed crystal having a short-range order parameter ? satisfying a range where 0???1.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: December 3, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Yoshitaka Kuraoka, Shigeaki Sumiya, Mikiya Ichimura, Tomohiko Sugiyama, Mitsuhiro Tanaka
  • Patent number: 8471265
    Abstract: Provided is a crack-free epitaxial substrate having a small amount of warping, in which a silicon substrate is used as a base substrate. The epitaxial substrate includes a (111) single crystal Si substrate, a buffer layer, and a crystal layer. The buffer layer is formed of a first lamination unit and a second lamination unit being alternately laminated. The first lamination unit includes a composition modulation layer and a first intermediate layer. The composition modulation layer is formed of a first unit layer and a second unit layer having different compositions being alternately and repeatedly laminated so that a compressive strain exists therein. The first intermediate layer enhances the compressive strain existing in the composition modulation layer. The second lamination unit is a second intermediate layer that is substantially strain-free.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: June 25, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Shigeaki Sumiya, Mikiya Ichimura, Sota Maehara, Mitsuhiro Tanaka
  • Patent number: 8415690
    Abstract: Provided is an epitaxial substrate using a silicon substrate as a base substrate. An epitaxial substrate, in which a group of group-III nitride layers are formed on a (111) single crystal Si substrate such that a (0001) crystal plane of the group of group-III nitride layers is substantially in parallel with a surface of the substrate, includes: a first group-III nitride layer made of AlN with many defects configured of at least one kind from a columnar or granular crystal or domain; a second group-III nitride layer whose interface with the first group-III nitride layer is shaped into a three-dimensional concave-convex surface; and a third group-III nitride layer epitaxially formed on the second group-III nitride layer as a graded composition layer in which the proportion of existence of Al is smaller in a portion closer to a fourth group-III nitride.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: April 9, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Shigeaki Sumiya, Mikiya Ichimura, Mitsuhiro Tanaka
  • Patent number: 8410552
    Abstract: Provided is an epitaxial substrate capable of achieving a semiconductor device that has excellent schottky contact characteristics as well as satisfactory device characteristics. On a base substrate, a channel layer formed of a first group III nitride that contains at least Al and Ga and has a composition of Inx1Aly1Gaz1N (x1+y1+z1=1) is formed. On the channel layer, a barrier layer formed of a second group III nitride that contains at least In and Al and has a composition of Inx2Aly2Gaz2N (x2+y2+z2=1) is formed such that an In composition ratio of a near-surface portion is smaller than an In composition ratio of a portion other than the near-surface portion.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: April 2, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Yoshitaka Kuraoka, Shigeaki Sumiya, Mikiya Ichimura, Tomohiko Sugiyama, Mitsuhiro Tanaka
  • Patent number: 8404045
    Abstract: An underlying film 2 of a group III nitride is formed on a substrate 1 by vapor phase deposition. The substrate 1 and the underlying film 2 are subjected to heat treatment in the present of hydrogen to remove the underlying film 2 so that the surface of the substrate 1 is roughened. A seed crystal film 4 of a group III nitride single crystal is formed on a surface of a substrate 1A by vapor phase deposition. A group III nitride single crystal 5 is grown on the seed crystal film 4 by flux method.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: March 26, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Yoshitaka Kuraoka, Shigeaki Sumiya, Makoto Miyoshi, Minoru Imaeda
  • Patent number: 8378386
    Abstract: Provided is an epitaxial substrate capable of achieving a semiconductor device that has excellent ohmic contact characteristics as well as satisfactory device characteristics. On a base substrate, a channel layer formed of a first group III nitride that contains at least Al and Ga and has a composition of Inx1Aly1Gaz1N (x1+y1+z1=1) is formed. On the channel layer, a barrier layer formed of a second group III nitride that contains at least In and Al and has a composition of Inx2Aly2Gaz2N (x2+y2+z2=1) is formed such that an In composition ratio of a near-surface portion is larger than an In composition ratio of a portion other than the near-surface portion.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: February 19, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Yoshitaka Kuraoka, Shigeaki Sumiya, Mikiya Ichimura, Tomohiko Sugiyama, Mitsuhiro Tanaka
  • Publication number: 20130032781
    Abstract: Provided is a crack-free epitaxial substrate with reduced warping, in which a silicon substrate is used as a base substrate. The epitaxial substrate includes a (111) single crystal Si substrate, a superlattice layer group in which a plurality of superlattice layers are laminated, and a crystal layer. The superlattice layer is formed of a first unit layer and a second unit layer made of group-III nitrides having different compositions being alternately and repeatedly laminated. The crystal layer is made of a group-III nitride and formed above the base substrate so as to be positioned at an upper side of the superlattice layer group relative to the base substrate. The superlattice layer group has a compressive strain contained therein. In the superlattice layer group, the more distant the superlattice layer is from the base substrate, the greater the compressive strain becomes.
    Type: Application
    Filed: August 9, 2012
    Publication date: February 7, 2013
    Applicant: NGK Insulators, Ltd.
    Inventors: Makoto MIYOSHI, Shigeaki Sumiya, Mikiya Ichimura, Tomohiko Sugiyama, Mitsuhiro Tanaka
  • Publication number: 20120211765
    Abstract: Provided is an epitaxial substrate using a silicon substrate as a base substrate. An epitaxial substrate, in which a group of group-III nitride layers are formed on a (111) single crystal Si substrate such that a (0001) crystal plane of the group of group-III nitride layers is substantially in parallel with a surface of the substrate, includes: a first group-III nitride layer made of AlN with many defects configured of at least one kind from a columnar or granular crystal or domain; a second group-III nitride layer whose interface with the first group-III nitride layer is shaped into a three-dimensional concave-convex surface; and a third group-III nitride layer epitaxially formed on the second group-III nitride layer as a graded composition layer in which the proportion of existence of Al is smaller in a portion closer to a fourth group-III nitride.
    Type: Application
    Filed: April 27, 2012
    Publication date: August 23, 2012
    Applicant: NGK Insulators, Ltd.
    Inventors: Makoto MIYOSHI, Shigeaki Sumiya, Mikiya Ichimura, Mitsuhiro Tanaka
  • Publication number: 20120168771
    Abstract: A semiconductor device is provided such that a reverse leak current is suppressed, and a Schottky junction is reinforced. The semiconductor device includes an epitaxial substrate formed by laminating a group of group-III nitride layers on a base substrate in such a manner that (0001) surfaces of said group-III nitride layers are substantially parallel to a substrate surface, and a Schottky electrode, in which the epitaxial substrate includes a channel layer formed of a first group-III nitride having a composition of Inx1Aly1Gaz1N, a barrier layer formed of a second group-III nitride having a composition of Inx2Aly2N, and a contact layer formed of a third group-III nitride having insularity and adjacent to the barrier layer, and the Schottky electrode is connected to the contact layer. In addition, a heat treatment is performed under a nitrogen atmosphere after the gate electrode has been formed.
    Type: Application
    Filed: March 8, 2012
    Publication date: July 5, 2012
    Inventors: Makoto Miyoshi, Shigeaki Sumiya, Mikiya Ichimura, Tomohiko Sugiyama, Mitsuhiro Tanaka
  • Publication number: 20120161152
    Abstract: Provided is a crack-free epitaxial substrate having a small amount of warping, in which a silicon substrate is used as a base substrate. The epitaxial substrate includes a (111) single crystal Si substrate, a buffer layer, and a crystal layer. The buffer layer is formed of a first lamination unit and a second lamination unit being alternately laminated. The first lamination unit includes a composition modulation layer and a first intermediate layer. The composition modulation layer is formed of a first unit layer and a second unit layer having different compositions being alternately and repeatedly laminated so that a compressive strain exists therein. The first intermediate layer enhances the compressive strain existing in the composition modulation layer. The second lamination unit is a second intermediate layer that is substantially strain-free.
    Type: Application
    Filed: March 7, 2012
    Publication date: June 28, 2012
    Applicant: NGK Insulators, Ltd.
    Inventors: Makoto MIYOSHI, Shigeaki Sumiya, Mikiya Ichimura, Sota Maehara, Mitsuhiro Tanaka