Patents by Inventor Shigehiro Nishijima

Shigehiro Nishijima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9561511
    Abstract: The present invention is a method for applying a gradient magnetic field to a paramagnetic supporting liquid containing a mixture of first particles and second particles to separate the mixture by particle type. A magnetic susceptibility of the first particles is lower than that of the liquid, and a magnetic susceptibility of the second particles is higher than that of the liquid. A gradient magnetic field is applied to the liquid in a separation tank provided with a magnetic filter and the liquid is stirred. The first particles float in the liquid by a magneto-Archimedes effect. A horizontal magnetic force acts on the first particles by the gradient magnetic field, so that the first particles travel to a region lateral to or outward from the magnetic filter and are gathered in the region. The magnetic filter is excited by the gradient magnetic field to catch the second particles.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: February 7, 2017
    Assignees: UBE INDUSTRIES, LTD., OSAKA UNIVERSITY
    Inventors: Shigehiro Nishijima, Fumihito Mishima, Koji Kaiso, Toshihiro Shimakawa
  • Patent number: 9370782
    Abstract: The present invention provides a method and an apparatus for separating a mixture that are capable of separating a mixture containing a plurality types of particles, using a countercurrent classification technique, even when there is little difference in density and particle diameter depending on the types of particles. In the present invention, a mixture containing first particles and second particles is separated using a separation tube 13 having the inverted-conical or pyramidal shape or a substantially inverted-conical or pyramidal shape. The first particles and the second particles are made of substances having different magnetic susceptibilities. A fluid is caused to flow upward through the separation tube 13, and the flow of the fluid is used to introduce the mixture into the separation tube 13. The first particles and the second particles are held in the separation tube 13 in a mixed state.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: June 21, 2016
    Assignees: OSAKA UNIVERSITY, UBE INDUSTRIES, LTD.
    Inventors: Shigehiro Nishijima, Fumihito Mishima, Koji Kaiso, Toshihiro Shimakawa
  • Patent number: 9308536
    Abstract: The present invention provides a method and an apparatus capable of continuously and accurately separating, by type, a mixture containing at least two types of particles, or capable of separating specific particles from the mixture, using a gradient magnetic field. In the present invention, a mixture containing at least two types of particles, particles of one type of which are made of a paramagnetic or diamagnetic substance, is treated. A magnetic field whose magnetic field gradient has a vertical component and a horizontal component is applied to a supporting liquid 21 stored in a separating tank 31. When the mixture is placed into the supporting liquid 21, the particles of the one type are guided such that they are positioned in the supporting liquid 21 at a predetermined height from a bottom face 39 of the separating tank 31 while horizontally traveling. Alternatively, the particles of the one type magnetically levitate at a liquid surface of the supporting liquid 21 and horizontally travel.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: April 12, 2016
    Assignees: OSAKA UNIVERSITY, UBE INDUSTRIES, LTD.
    Inventors: Shigehiro Nishijima, Fumihito Mishima
  • Patent number: 9174221
    Abstract: Provided are a mixture separation method and a separation apparatus in which agglomeration of particles contained in the mixture is suppressed, energy required in distillation treatment of a supporting liquid is small in comparison with conventional methods, and particles that cannot be separated by conventional methods can be separated from a mixture containing the particles. The separation method and separation apparatus of the present invention separate, by type, a plurality of types of particles formed of mutually different materials by applying a magnetic field having a magnetic field gradient to the mixture containing the plurality of types of particles in the supporting liquid. Alternatively, the separation method and separation apparatus of the present invention separate a specific type of particle from such mixture. The supporting liquid is an organic solvent solution obtained by dissolving one or more types of paramagnetic compounds in an organic solvent.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: November 3, 2015
    Assignees: OSAKA UNIVERSITY, UBE INDUSTRIES, LTD.
    Inventors: Shigehiro Nishijima, Fumihito Mishima, Koji Kaiso, Toshihiro Shimakawa
  • Patent number: 8916049
    Abstract: The processing method for a mixture according to the present invention is a method for processing a mixture having first particles made of a magnetic material or a nonmagnetic material and second particles made of a magnetic material or a nonmagnetic material wherein the second particles are mixed in a fluid medium containing the first particles, and comprises a dispersion step of dispersing aggregates of the first particles and the second particles present in the mixture, and a magnetic separation step of providing the first particles and second particles with a magnetic force a of different magnitudes by applying a magnetic field to the mixture in parallel with or after the dispersion step, thereby separating the first particles and the second particles from each other.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: December 23, 2014
    Assignees: Osaka University, Ube Industries, Ltd.
    Inventor: Shigehiro Nishijima
  • Publication number: 20140332449
    Abstract: The present invention provides a method and an apparatus for separating a mixture that are capable of separating a mixture containing a plurality types of particles, using a countercurrent classification technique, even when there is little difference in density and particle diameter depending on the types of particles. In the present invention, a mixture containing first particles and second particles is separated using a separation tube 13 having the inverted-conical or pyramidal shape or a substantially inverted-conical or pyramidal shape. The first particles and the second particles are made of substances having different magnetic susceptibilities. A fluid is caused to flow upward through the separation tube 13, and the flow of the fluid is used to introduce the mixture into the separation tube 13. The first particles and the second particles are held in the separation tube 13 in a mixed state.
    Type: Application
    Filed: December 11, 2012
    Publication date: November 13, 2014
    Applicants: OSAKA UNIVERSITY, UBE INDUSTRIES, LTD.
    Inventors: Shigehiro Nishijima, Fumihito Mishima, Koji Kaiso, Toshihiro Shimakawa
  • Publication number: 20140202960
    Abstract: Provided are a mixture separation method and a separation apparatus in which processes are performed efficiently in a short time compared to conventional methods with a low load on the apparatus configuration compared to conventional methods. The present invention is a mixture separation method or a mixture separation apparatus for separating, by applying a gradient magnetic field to a paramagnetic supporting liquid containing a mixture of first particles and second particles, the mixture by particle type. A magnetic susceptibility of the first particles is lower than a magnetic susceptibility of the supporting liquid, and a magnetic susceptibility of the second particles is higher than the magnetic susceptibility of the supporting liquid. A gradient magnetic field is applied to the supporting liquid in the separation tank (7) provided with a magnetic filter means (9) using a magnetic field generating means (11), and the supporting liquid is stirred.
    Type: Application
    Filed: August 24, 2012
    Publication date: July 24, 2014
    Applicants: UBE INDUSTRIES, LTD., OSAKA UNIVERSITY
    Inventors: Shigehiro Nishijima, Fumihito Mishima, Koji Kaiso, Toshihiro Shimakawa
  • Publication number: 20140014559
    Abstract: Provided are a mixture separation method and a separation apparatus in which agglomeration of particles contained in the mixture is suppressed, energy required in distillation treatment of a supporting liquid is small in comparison with conventional methods, and particles that cannot be separated by conventional methods can be separated from a mixture containing the particles. The separation method and separation apparatus of the present invention separate, by type, a plurality of types of particles formed of mutually different materials by applying a magnetic field having a magnetic field gradient to the mixture containing the plurality of types of particles in the supporting liquid. Alternatively, the separation method and separation apparatus of the present invention separate a specific type of particle from such mixture. The supporting liquid is an organic solvent solution obtained by dissolving one or more types of paramagnetic compounds in an organic solvent.
    Type: Application
    Filed: March 28, 2012
    Publication date: January 16, 2014
    Applicants: UBE INDUSTRIES, LTD., OSAKA UNIVERSITY
    Inventors: Shigehiro Nishijima, Fumihito Mishima, Koji Kaiso, Toshihiro Shimakawa
  • Publication number: 20130327684
    Abstract: The present invention provides a method and an apparatus capable of continuously and accurately separating, by type, a mixture containing at least two types of particles, or capable of separating specific particles from the mixture, using a gradient magnetic field. In the present invention, a mixture containing at least two types of particles, particles of one type of which are made of a paramagnetic or diamagnetic substance, is treated. A magnetic field whose magnetic field gradient has a vertical component and a horizontal component is applied to a supporting liquid 21 stored in a separating tank 31. When the mixture is placed into the supporting liquid 21, the particles of the one type are guided such that they are positioned in the supporting liquid 21 at a predetermined height from a bottom face 39 of the separating tank 31 while horizontally traveling. Alternatively, the particles of the one type magnetically levitate at a liquid surface of the supporting liquid 21 and horizontally travel.
    Type: Application
    Filed: February 21, 2012
    Publication date: December 12, 2013
    Applicants: UBE INDUSTRIES, LTD, OSAKA UNIVERSITY
    Inventors: Shigehiro Nishijima, Fumihito Mishima
  • Publication number: 20110278231
    Abstract: The processing method for a mixture according to the present invention is a method for processing a mixture having first particles made of a magnetic material or a nonmagnetic material and second particles made of a magnetic material or a nonmagnetic material wherein the second particles are mixed in a fluid medium containing the first particles, and comprises a dispersion step of dispersing aggregates of the first particles and the second particles present in the mixture, and a magnetic separation step of providing the first particles and second particles with a magnetic force a of different magnitudes by applying a magnetic field to the mixture in parallel with or after the dispersion step, thereby separating the first particles and the second particles from each other.
    Type: Application
    Filed: January 22, 2010
    Publication date: November 17, 2011
    Applicant: OSAKA UNIVERSITY
    Inventor: Shigehiro Nishijima
  • Publication number: 20070299550
    Abstract: A three-dimensional guidance system of the present invention includes a bed (1) horizontally driven by a bed drive motor (11), a position detecting sensor (6) for detecting a position of a magnetic particle carrier (8), a plurality of electromagnets (3, 4, 5) arranged to surround the bed (1), and a controller (7) for controlling a current to be supplied to the plurality of electromagnets (3, 4, 5) and a drive signal to be supplied to the bed drive motor (11). The controller (7) holds a vascular route as three-dimensional route data, and feedback-controls the current to be supplied to the plurality of electromagnets (3, 4, 5) and the drive signal to be supplied to the bed drive motor (11), based on a deviation of the current position of the magnetic particle carrier (8) detected by the position detecting sensor (6) from a target position.
    Type: Application
    Filed: August 1, 2005
    Publication date: December 27, 2007
    Applicant: OSAKA UNIVERSITY
    Inventors: Shigehiro Nishijima, Shinichi Takeda