Patents by Inventor Shigehiro SUGIHIRA

Shigehiro SUGIHIRA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180202329
    Abstract: When a stop request to the engine is issued, it is determined whether or not all of the drive cams are large cams. When it is determined that at least one of the small cams is included in the drive cams, the engine is continued to drive for a while and a switch control for switching the drive cams from the small cams to the large cams is executed within the duration. A self-holding type solenoid is used to switch between the small cams and the large cams. In the switch control, a permission to stop the engine is output at a timing when the “pin protrudable section” of the final cylinder #2 has elapsed.
    Type: Application
    Filed: November 13, 2017
    Publication date: July 19, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kaoru OHTSUKA, Hiroyuki SUGIHARA, Shinji SADAKANE, Noriyasu ADACHI, Shigehiro SUGIHIRA, Keisuke SASAKI, Takayoshi KAWAI
  • Publication number: 20180163654
    Abstract: In starting the engine, if it is determined that large cams are not completely prepared for all driving cams, valve closing timings of all intake valves are changed by driving the VVT so that all of the cylinders have equal in-cylinder filling efficiency. A fuel injection amount of each cylinder is determined by a feedforward control assuming that the large cams are completely prepared for all of the driving cams. When the valve closing timing of all of the intake valves are changed by driving the VVT to equalize the in-cylinder filling efficiencies of all of the cylinders, all of the cylinders have substantially equal in-cylinder air-fuel ratios.
    Type: Application
    Filed: October 16, 2017
    Publication date: June 14, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroyuki SUGIHARA, Kaoru OTSUKA, Shinji SADAKANE, Noriyasu ADACHI, Shigehiro SUGIHIRA, Keisuke SASAKI, Takayoshi KAWAI
  • Publication number: 20180016995
    Abstract: A failure diagnosis apparatus according to the present disclosure is applied to a variable compression ratio mechanism that can switch the compression ratio of an internal combustion engine between at least a first compression ratio and a second compression ratio lower than the first compression ratio. When the variable compression ratio mechanism is controlled so as to set the compression ratio of the internal combustion engine to the second compression ratio, the failure diagnosis apparatus advances the ignition timing of one cylinder to a knock inducing ignition timing more advanced than the MBT that does not lead to the occurrence of knock if the actual compression ratio of that cylinder is the second compression ratio but leads to the occurrence of knock if the actual compression ratio of that cylinder is the first compression ratio and diagnoses failure of the variable compression ratio mechanism on the basis of whether knock occurs or not.
    Type: Application
    Filed: July 14, 2017
    Publication date: January 18, 2018
    Inventors: Shigehiro SUGIHIRA, Naoto KATO, Ryutaro MORIGUCHI, Yushi SHIBAIKE
  • Patent number: 9845741
    Abstract: An abnormality detection device is mounted on an engine control device that calculates a target load factor by using a target torque, converts the target load factor to a target throttle opening, calculates a target ignition timing by using a target efficiency, and controls an engine based on the target throttle opening and the target ignition timing. In the abnormality detection device, a target efficiency for monitoring is calculated by using the target ignition timing, a target torque for monitoring is calculated by using the target efficiency for monitoring and the target load factor, a torque deviation between the target torque for monitoring and the target torque is calculated, and the presence or absence of an abnormality is detected by using the torque deviation.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: December 19, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigehiro Sugihira, Naoto Kato, Yoshitaka Ukawa
  • Publication number: 20170350338
    Abstract: The invention relates to a control device for an internal combustion engine that includes a turbocharger, and an actuator that changes a turbocharging pressure by regulating exhaust energy for use in drive of the turbocharger. When a target torque is increased during execution of a lean burn operation, the control device switches an operation mode of the internal combustion engine from the lean burn operation to a stoichiometric operation. When the operation mode switching is performed in a turbocharging state, the control device determines whether a target torque is within a range of a torque realizable under the lean air-fuel ratio. When the target torque is within the range, the control device operates the actuator so as to keep the turbocharging pressure at a magnitude equal to or larger than a magnitude at a time point at which the operation mode is switched.
    Type: Application
    Filed: October 27, 2015
    Publication date: December 7, 2017
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigehiro SUGIHIRA, Naoto KATO, Satoshi YOSHIZAKI
  • Publication number: 20170342926
    Abstract: A controller for an internal combustion engine includes an electronic control unit. The electronic control unit is configured to increase an air amount that is suctioned into a cylinder while maintaining the lean air-fuel ratio as a first torque increasing operation in a case where target torque is increased during the operation at the lean air-fuel ratio such that torque is increased. The electronic control unit is configured to compute limit torque as an upper limit of the torque that can be realized in a case where the lean air-fuel ratio is kept for a certain time from a current time point. The electronic control unit is configured to switch to the operation at the theoretical air-fuel ratio and increase the torque as a second torque increasing operation in a case where the target torque becomes higher than the limit torque during execution of the first torque increasing operation.
    Type: Application
    Filed: December 10, 2015
    Publication date: November 30, 2017
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigehiro SUGIHIRA, Naoto KATO, Satoshi YOSHIZAKI
  • Patent number: 9657677
    Abstract: An integrated control apparatus includes an internal combustion engine, a stepped automatic transmission, a power train manager, and an engine controller. The power train manager is configured to: output a target torque and a forenotice torque to the engine controller; start lowering of the target torque after a specified time elapses from a timing of an upshifting instruction; lower the forenotice torque prior to the lowering of the target torque. The engine controller is configured to: start a reduction in an air amount in accordance with a magnitude of lowering of the forenotice torque; start reducing the air amount from a time when the lowering of the forenotice torque is started until a time when the lowering of the target torque is started; and adjust an air-fuel ratio in accordance with a deviation between the target torque and a torque that is estimated from a lean air-fuel ratio and the air amount.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: May 23, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Satoshi Yoshizaki, Naoto Kato, Shigehiro Sugihira
  • Patent number: 9638123
    Abstract: A controller for an engine controls a throttle opening degree. The controller includes a target opening degree calculating section that selects either a primary request value for a throttle opening degree that corresponds to a torque request or a secondary request value that corresponds to another request and that calculates a target throttle opening degree from the selected one of the first and secondary request values. If the primary request value has been selected, an abnormality occurrence determining section determines whether or not an abnormality has occurred, in accordance with a magnitude of a deviation of the primary request value from the target throttle opening degree. If the secondary request value has been selected, the abnormality occurrence determining section determines whether or not an abnormality has occurred, in accordance with whether or not the target throttle opening degree is greater than or equal to a predetermined upper limit value.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: May 2, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoshitaka Ukawa, Naoto Kato, Shigehiro Sugihira
  • Publication number: 20160312734
    Abstract: An integrated control apparatus includes an internal combustion engine, a stepped automatic transmission, a power train manager, and an engine controller. The power train manager is configured to: output a target torque and a forenotice torque to the engine controller; start lowering of the target torque after a specified time elapses from a timing of an upshifting instruction; lower the forenotice torque prior to the lowering of the target torque. The engine controller is configured to: start a reduction in an air amount in accordance with a magnitude of lowering of the forenotice torque; start reducing the air amount from a time when the lowering of the forenotice torque is started until a time when the lowering of the target torque is started; and adjust an air-fuel ratio in accordance with a deviation between the target torque and a torque that is estimated from a lean air-fuel ratio and the air amount.
    Type: Application
    Filed: April 22, 2016
    Publication date: October 27, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Satoshi YOSHIZAKI, Naoto KATO, Shigehiro SUGIHIRA
  • Publication number: 20150377163
    Abstract: A controller for an engine controls a throttle opening degree. The controller includes a target opening degree calculating section that selects either a primary request value for a throttle opening degree that corresponds to a torque request or a secondary request value that corresponds to another request and that calculates a target throttle opening degree from the selected one of the first and secondary request values. If the primary request value has been selected, an abnormality occurrence determining section determines whether or not an abnormality has occurred, in accordance with a magnitude of a deviation of the primary request value from the target throttle opening degree. If the secondary request value has been selected, the abnormality occurrence determining section determines whether or not an abnormality has occurred, in accordance with whether or not the target throttle opening degree is greater than or equal to a predetermined upper limit value.
    Type: Application
    Filed: September 27, 2013
    Publication date: December 31, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoshitaka UKAWA, Naoto KATO, Shigehiro SUGIHIRA
  • Publication number: 20150285167
    Abstract: An abnormality detection device is mounted on an engine control device that calculates a target load factor by using a target torque, converts the target load factor to a target throttle opening, calculates a target ignition timing by using a target efficiency, and controls an engine based on the target throttle opening and the target ignition timing. In the abnormality detection device, a target efficiency for monitoring is calculated by using the target ignition timing, a target torque for monitoring is calculated by using the target efficiency for monitoring and the target load factor, a torque deviation between the target torque for monitoring and the target torque is calculated, and the presence or absence of an abnormality is detected by using the torque deviation.
    Type: Application
    Filed: January 28, 2014
    Publication date: October 8, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigehiro SUGIHIRA, Naoto KATO, Yoshitaka UKAWA