Patents by Inventor Shigekazu MIYASHITA

Shigekazu MIYASHITA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230020444
    Abstract: A heat storage material composition according to an aspect of the present invention includes a main agent mixture composed of calcium chloride hexahydrate. ammonium chloride, and water. wherein when the content of calcium chloride hexahydrate is defined as CA mass %, the content of ammonium chloride is defined as NH mass %. and the content of water is defined as W mass % in 100 mass % of the main agent mixture, parameters X and Y defined by equations (P1) and (P2) below satisfy equations (1) to (5) below. [Equation 1] X=100×CA/(CA+W) ??(P1) [Equation 2] Y=100×NH/(CA+NH+W) ??(P2) [Equation 3] X?51.75>0 ??(1) [Equation 4] 52.75?X>0 ??(2) [Equation 5] 4.25?Y>0 ??(3) [Equation 6] 1.2245X+Y?66.367>0 ??(4) [Equation 7] ?2.1569X+Y+110.
    Type: Application
    Filed: September 15, 2022
    Publication date: January 19, 2023
    Applicant: YAZAKI CORPORATION
    Inventors: Sangbae LEE, Shigekazu MIYASHITA, Takashi MOMOI
  • Publication number: 20220282146
    Abstract: A heat storage material composition includes a main agent composed of calcium chloride hexahydrate, ammonium bromide, and potassium chloride, wherein when a content of calcium chloride hexahydrate is defined as X mass %, a content of ammonium bromide is defined as Y mass %, and a content of potassium chloride is defined as Z mass % in 100 mass % of the main agent, X, Y, and Z satisfy following equations (1) to (4): [Equation 1] X+Y+Z=100??(1) [Equation 2] X+0.714Y?90.857?0??(2) [Equation 3] X+Y?99.
    Type: Application
    Filed: May 20, 2022
    Publication date: September 8, 2022
    Applicant: YAZAKI CORPORATION
    Inventors: Takashi MOMOI, Shigekazu MIYASHITA, Sangbae LEE
  • Publication number: 20220089929
    Abstract: A heat storage material composition includes a main agent composed of a calcium chloride hexahydrate, an ammonium bromide, and a potassium bromide, wherein a 5° C. range lower-limit temperature T5L is in a range of 15° C. or more to less than 20° C., and a 5° C. range latent heat of melting H5 is 140 J/g or more. Preferably, the heat storage material composition includes 79 to 90.9 mass % of the calcium chloride hexahydrate, 2.7 to 12.3 mass % of the ammonium bromide, and 1.8 to 14.4 mass % of the potassium bromide in 100 mass % of the main agent.
    Type: Application
    Filed: December 2, 2021
    Publication date: March 24, 2022
    Applicant: YAZAKI CORPORATION
    Inventors: Sangbae LEE, Tsutomu Kagohashi, Shigekazu Miyashita, Takashi Momoi
  • Patent number: 10415123
    Abstract: The austenitic heat resistant steel of the embodiment contains: 24 to 50% by mass of Ni, 5 to 13% by mass of Cr, 0.1 to 12% by mass of Co, 0.1 to 5% by mass of Nb, 0.1 to 0.5% by mass of V, 1.90 to 2.35% by mass of Ti, 0.01 to 0.30% by mass of Al, 0.001 to 0.01% by mass of B, 0.001 to 0.1% by mass of C, and the balance being Fe and inevitable impurities.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: September 17, 2019
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shun Oinuma, Kiyoshi Imai, Shigekazu Miyashita, Kuniyoshi Nemoto
  • Patent number: 9856735
    Abstract: A method of manufacturing a steam turbine rotor which includes an ultra-high temperature side portion in which ultra-high temperature steam flows and a high temperature side portion in which high temperature steam flows, the manufacturing method including the steps of: preparing a first electrode having a chemical composition corresponding to a chemical composition of a heat resistant alloy making up the ultra-high temperature side portion and a second electrode having a chemical composition corresponding to a chemical composition of the high temperature side portion; tentatively joining together joints of the electrodes, with the joints of the electrodes made smaller in cross sectional area than other electrode portions; subjecting the tentatively joined first and second electrodes to an ESR process to obtain an ESR ingot and forging the ingot into a shape of a rotor to obtain a rotor forging; and heat-treating the rotor forging to obtain a rotor blank and manufacturing the steam turbine rotor from the rotor
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: January 2, 2018
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masayuki Yamada, Takao Inukai, Kiyoshi Imai, Shigekazu Miyashita, Kuniyoshi Nemoto, Reki Takaku
  • Publication number: 20170314106
    Abstract: The austenitic heat resistant steel of the embodiment contains: 24 to 50% by mass of Ni, 5 to 13% by mass of Cr, 0.1 to 12% by mass of Co, 0.1 to 5% by mass of Nb, 0.1 to 0.5% by mass of V, 1.90 to 2.35% by mass of Ti, 0.01 to 0.30% by mass of Al, 0.001 to 0.01% by mass of B, 0.001 to 0.1% by mass of C, and the balance being Fe and inevitable impurities.
    Type: Application
    Filed: July 7, 2017
    Publication date: November 2, 2017
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shun OINUMA, Kiyoshi IMAI, Shigekazu MIYASHITA, Kuniyoshi NEMOTO
  • Patent number: 9447486
    Abstract: An Ni-based alloy for casting used for a steam turbine of an embodiment contains in percent (%) by mass C (carbon): 0.01 to 0.1, Cr (chromium): 15 to 25, Co (cobalt): 10 to 15, Mo (molybdenum): 5 to 12, Al (aluminum): 0.5 to 2, Ti (titanium): 0.3 to 2, B (boron): 0.001 to 0.006, Ta (tantalum): 0.05 to 1, Si (silicon): 0.1 to 0.5, Mn (manganese): 0.1 to 0.5, and the balance of Ni (nickel) and unavoidable impurities.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: September 20, 2016
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kuniyoshi Nemoto, Yomei Yoshioka, Kiyoshi Imai, Shigekazu Miyashita, Takeo Suga
  • Patent number: 9328402
    Abstract: In one embodiment, a nickel-base alloy for forging or rolling contains, in weight %, carbon (C): 0.05 to 0.2, silicon (Si) 0.01 to 1, manganese (Mn): 0.01 to 1, cobalt (Co): 5 to 20, iron (Fe): 0.01 to 10, chromium (Cr): 15 to 25, and one kind or two kinds or more of molybdenum (Mo), tungsten (W) and rhenium (Re), with Mo+(W+Re)/2: 8 to 25, the balance being nickel (Ni) and unavoidable impurities.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: May 3, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masayuki Yamada, Kiyoshi Imai, Kuniyoshi Nemoto, Shigekazu Miyashita, Takeo Suga
  • Patent number: 9238853
    Abstract: A Ni-base casting superalloy containing, in masse, C: 0.05 to 0.2, Si: 0.01 to 1, Mn: 0.01 to 1, Co: 5 to 20, Fe: 10 or less, Cr: 15 to 25, and one kind or two kinds or more of Mo, W, and Re, with Mo+(W+Re)/2: 8 to 25, the balance being Ni and unavoidable impurities.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: January 19, 2016
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masayuki Yamada, Kiyoshi Imai, Kuniyoshi Nemoto, Shigekazu Miyashita, Kazutaka Ikeda, Takeo Suga
  • Patent number: 8858158
    Abstract: A steam turbine 10 is comprised of a double-structured casing configured of an outer casing 21 and an inner casing 20, a turbine rotor 23 disposed through the inner casing and having a plurality of stages of moving blades 22 implanted, and a plurality of stages of stationary blades 25 disposed alternately with the moving blades 22 in the axial direction of the turbine rotor 23 in the inner casing 20. The steam turbine 10 is further provided with a discharge passage 30 which externally guides steam, which has flown in the inner casing and passed the final stage moving blades while performing expansion work, directly from the inner casing interior.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: October 14, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazutaka Ikeda, Katsuya Yamashita, Takao Inukai, Kazuhiro Saito, Kouichi Kitaguchi, Shogo Iwai, Shigekazu Miyashita
  • Patent number: 8828313
    Abstract: An Ni-base alloy for a turbine rotor of a steam turbine contains in percent by weight C: 0.01 to 0.15, Cr: 15 to 28, Co: 10 to 15, Mo: 8 to 12, Al: 1.5 to 2, Ti: 0.1 to 0.6, B: 0.001 to 0.006, Re: 0.5 to 3, and the balance of Ni and unavoidable impurities.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: September 9, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kuniyoshi Nemoto, Kiyoshi Imai, Yomei Yoshioka, Masayuki Yamada, Reki Takaku, Shigekazu Miyashita, Takeo Suga, Takeo Takahashi, Kenichi Okuno, Akihiro Takakuwa
  • Publication number: 20120315133
    Abstract: An Ni-based alloy for casting used for a steam turbine of an embodiment contains in percent (%) by mass C (carbon): 0.01 to 0.1, Cr (chromium): 15 to 25, Co (cobalt): 10 to 15, Mo (molybdenum): 5 to 12, Al (aluminum): 0.5 to 2, Ti (titanium): 0.3 to 2, B (boron): 0.001 to 0.006, Ta (tantalum): 0.05 to 1, Si (silicon): 0.1 to 0.5, Mn (manganese): 0.1 to 0.5, and the balance of Ni (nickel) and unavoidable impurities.
    Type: Application
    Filed: June 4, 2012
    Publication date: December 13, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kuniyoshi NEMOTO, Yomei YOSHIOKA, Kiyoshi IMAI, Shigekazu MIYASHITA, Takeo SUGA
  • Publication number: 20110229339
    Abstract: A method of manufacturing a steam turbine rotor which includes an ultra-high temperature side portion in which ultra-high temperature steam flows and a high temperature side portion in which high temperature steam flows, the manufacturing method including the steps of: preparing a first electrode having a chemical composition corresponding to a chemical composition of a heat resistant alloy making up the ultra-high temperature side portion and a second electrode having a chemical composition corresponding to a chemical composition of the high temperature side portion; tentatively joining together joints of the electrodes, with the joints of the electrodes made smaller in cross sectional area than other electrode portions; subjecting the tentatively joined first and second electrodes to an ESR process to obtain an ESR ingot and forging the ingot into a shape of a rotor to obtain a rotor forging; and heat-treating the rotor forging to obtain a rotor blank and manufacturing the steam turbine rotor from the rotor
    Type: Application
    Filed: October 27, 2009
    Publication date: September 22, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Masayuki Yamada, Takao Inukai, Kiyoshi Imai, Shigekazu Miyashita, Kuniyoshi Nemoto, Reki Takaku
  • Publication number: 20110064569
    Abstract: In one embodiment, a nickel-base alloy for forging or rolling contains, in weight %, carbon (C): 0.05 to 0.2, silicon (Si) 0.01 to 1, manganese (Mn): 0.01 to 1, cobalt (Co): 5 to 20, iron (Fe): 0.01 to 10, chromium (Cr): 15 to 25, and one kind or two kinds or more of molybdenum (Mo), tungsten (W) and rhenium (Re), with Mo+(W+Re)/2: 8 to 25, the balance being nickel (Ni) and unavoidable impurities.
    Type: Application
    Filed: August 11, 2010
    Publication date: March 17, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Masayuki YAMADA, Kiyoshi Imai, Kuniyoshi Nemoto, Shigekazu Miyashita, Takeo Suga
  • Publication number: 20100239425
    Abstract: A nickel (Ni)-base alloy for a turbine rotor of a steam turbine containing, in mass %, carbon (C): 0.01% to 0.15%, chromium (Cr): 18% to 28%, cobalt (Co): 10% to 15%, molybdenum (Mo): 8% to 12%, aluminum (Al): 0.5% to less than 1.5%, titanium (Ti): 0.7% to 3.0%, and boron (B): 0.001% to 0.006%, the balance being nickel (Ni) and unavoidable impurities.
    Type: Application
    Filed: March 16, 2010
    Publication date: September 23, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shigekazu MIYASHITA, Kiyoshi Imai, Masayuki Yamada, Kuniyoshi Nemoto, Takeo Suga, Takeo Takahashi, Kazutaka Ikeda
  • Publication number: 20100158681
    Abstract: A Ni-based alloy for a forged part of a steam turbine having excellent high temperature strength, forgeability and weldability includes, in percentage by mass, 0.01 to 0.15 of C, 18 to 28 of Cr, 10 to 15 of Co, 8 to 12 of Mo, 1.5 to 2 of Al, 0.1 to 3 of Ti, 0.001 to 0.006 of B, 0.1 to 0.7 of Ta, and the balance of Ni plus unavoidable impurities.
    Type: Application
    Filed: December 8, 2009
    Publication date: June 24, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kuniyoshi NEMOTO, Kiyoshi IMAI, Yomei YOSHIOKA, Masayuki YAMADA, Shigekazu MIYASHITA, Takeo SUGA, Takeo TAKAHASHI, Kazutaka IKEDA
  • Publication number: 20100158682
    Abstract: A Ni-based alloy for a casting part of a steam turbine having excellent high temperature strength, castability and weldability includes, in percentage by mass, 0.01 to 0.15 of C, 18 to 28 of Cr, 10 to 15 of Co, 8 to 12 of Mo, 1.5 to 2 of Al, 0.1 to 3 of Ti, 0.001 to 0.006 of B, 0.1 to 0.7 of Ta, and the balance of Ni plus unavoidable impurities.
    Type: Application
    Filed: December 8, 2009
    Publication date: June 24, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kuniyoshi NEMOTO, Kiyoshi Imai, Yomei Yoshioka, Masayuki Yamada, Shigekazu Miyashita, Takeo Suga, Takeo Takahashi, Kazutaka Ikeda
  • Publication number: 20100034641
    Abstract: A steam turbine 10 is comprised of a double-structured casing configured of an outer casing 21 and an inner casing 20, a turbine rotor 23 disposed through the inner casing and having a plurality of stages of moving blades 22 implanted, and a plurality of stages of stationary blades 25 disposed alternately with the moving blades 22 in the axial direction of the turbine rotor 23 in the inner casing 20. The steam turbine 10 is further provided with a discharge passage 30 which externally guides steam, which has flown in the inner casing and passed the final stage moving blades while performing expansion work, directly from the inner casing interior.
    Type: Application
    Filed: August 6, 2009
    Publication date: February 11, 2010
    Inventors: Kazutaka Ikeda, Katsuya Yamashita, Takao Inukai, Kazuhiro Saito, Kouichi Kitaguchi, Shogo Iwai, Shigekazu Miyashita
  • Publication number: 20090291016
    Abstract: A Ni-base casting superalloy containing, in masse, C: 0.05 to 0.2, Si: 0.01 to 1, Mn: 0.01 to 1, Co: 5 to 20, Fe: 10 or less, Cr: 15 to 25, and one kind or two kinds or more of Mo, W, and Re, with Mo+(W+Re)/2: 8 to 25, the balance being Ni and unavoidable impurities.
    Type: Application
    Filed: May 20, 2009
    Publication date: November 26, 2009
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Masayuki Yamada, Kiyoshi Imai, Kuniyoshi Nemoto, Shigekazu Miyashita, Kazutaka Ikeda, Takeo Suga
  • Publication number: 20090285692
    Abstract: An Ni-base alloy for a turbine rotor of a steam turbine contains in percent by weight C: 0.01 to 0.15, Cr: 15 to 28, Co: 10 to 15, Mo: 8 to 12, Al: 1.5 to 2, Ti: 0.1 to 0.6, B: 0.001 to 0.006, Re: 0.5 to 3, and the balance of Ni and unavoidable impurities.
    Type: Application
    Filed: March 13, 2009
    Publication date: November 19, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kuniyoshi NEMOTO, Kiyoshi IMAI, Yomei YOSHIOKA, Masayuki YAMADA, Reki TAKAKU, Shigekazu MIYASHITA, Takeo SUGA, Takeo TAKAHASHI, Kenichi OKUNO, Akihiro TAKAKUWA