Patents by Inventor Shigeki Hasegawa

Shigeki Hasegawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150180047
    Abstract: This electrode for fuel cell comprises: carbon nanotubes; a catalyst for fuel cell supported on the carbon nanotubes; and an ionomer provided to coat the carbon nanotubes and the catalyst for fuel cell, wherein when a length of the carbon nanotubes is represented by La [?m] and an inter-core pitch of the carbon nanotubes is represented by Pa [nm], the length La and the inter-core pitch Pa satisfy two expressions given below: 30?La?240; and 0.351×La+75?Pa?250.
    Type: Application
    Filed: August 2, 2012
    Publication date: June 25, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigeki Hasegawa, Shigeaki Murata, Masahiro Imanishi, Ryoichi Namba
  • Patent number: 8980038
    Abstract: An object of the present invention is to provide a method for producing a membrane electrode assembly with excellent electrode transfer ability to electrolyte membrane. Disclosed is a method for producing a membrane electrode assembly, the assembly comprising an electrolyte membrane and an electrode which are attached to each other, the method comprising: a hot pressing step in which an electrolyte membrane and an electrode, the electrode comprising an electroconductive material and an electrolyte resin and being formed on a flexible substrate, are hot pressed to produce a laminate in which the electrolyte membrane, the electrode and the flexible substrate are laminated in this order, and a bending step in which the laminate is bent so that the flexible substrate side becomes concave, thereby removing the flexible substrate from the electrode.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: March 17, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Keita Yamaue, Shigeaki Murata, Masahiro Imanishi, Shigeki Hasegawa, Ryoichi Nanba, Kyohei Kadota
  • Patent number: 8877393
    Abstract: A fuel cell is disclosed comprising: a power generation layer including an electrolyte membrane, and an anode and a cathode provided on respective surfaces of the electrolyte membrane; a fuel gas flow path layer located on a side of the anode of the power generation layer to supply a fuel gas to the anode while flowing the fuel gas along a flow direction of the fuel gas approximately orthogonal to a stacking direction in which respective layers of the fuel cell are stacked; and an oxidizing gas flow path layer located on a side of the cathode of the power generation layer to supply an oxidizing gas to the cathode while flowing the oxidizing gas along a flow direction of the oxidizing gas opposed to the flow direction of the fuel gas.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: November 4, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroaki Takeuchi, Tomohiro Ogawa, Ryouichi Nanba, Takumi Taniguchi, Shinji Jomori, Koichiro Ikeda, Shigeki Hasegawa, Masayuki Ito, Hitoshi Hamada, Naohiro Takeshita
  • Publication number: 20140318696
    Abstract: An object of the present invention is to provide a method for producing a membrane electrode assembly with excellent electrode transfer ability to electrolyte membrane. Disclosed is a method for producing a membrane electrode assembly, the assembly comprising an electrolyte membrane and an electrode which are attached to each other, the method comprising: a hot pressing step in which an electrolyte membrane and an electrode, the electrode comprising an electroconductive material and an electrolyte resin and being formed on a flexible substrate, are hot pressed to produce a laminate in which the electrolyte membrane, the electrode and the flexible substrate are laminated in this order, and a bending step in which the laminate is bent so that the flexible substrate side becomes concave, thereby removing the flexible substrate from the electrode.
    Type: Application
    Filed: November 1, 2012
    Publication date: October 30, 2014
    Inventors: Keita Yamaue, Shigeaki Murata, Masahiro Imanishi, Shigeki Hasegawa, Ryoichi Nanba, Kyohei Kadota
  • Publication number: 20140205930
    Abstract: A method for producing a catalyst supporting a metal or an alloy on a support, including: independently controlling a temperature of a first supercritical fluid to be first temperature, the first supercritical fluid containing a precursor of the metal or precursor of the alloy that is dissolved in a supercritical fluid; independently controlling a temperature of the support to be a second temperature higher than the temperature of the first supercritical fluid; and supplying the first supercritical fluid controlled to the first temperature to the support, to cause the metal or the alloy to be supported on the support.
    Type: Application
    Filed: August 29, 2012
    Publication date: July 24, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigeki Hasegawa, Satoru Aizawa
  • Patent number: 8765324
    Abstract: The present invention relates a method for manufacturing a fuel cell. An object of the present invention is to provide a method for manufacturing a membrane electrode assembly capable of solving an electrical connection problem caused by uneven tube lengths and improving an output, and a solid polymer electrolyte fuel cell. The method for manufacturing the membrane electrode assembly of the present invention includes a seed catalyst layer forming process (1), a CNT growing process (2), a CNT entanglement promoting process (3), a catalyst carrying process (4), an ionomer arranging process (5), and a transferring (MEA conversion) process (6). According to the present invention, entanglement of adjacent CNTs can be promoted by the CNT entanglement promoting process (3) and therefore the electrical connection of the CNTs can be ensured. Thus, the output of the cell can be improved.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: July 1, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shigeki Hasegawa
  • Publication number: 20130288152
    Abstract: The present invention relates a method for manufacturing a fuel cell. An object of the present invention is to provide a method for manufacturing a membrane electrode assembly capable of solving an electrical connection problem caused by uneven tube lengths and improving an output, and a solid polymer electrolyte fuel cell. The method for manufacturing the membrane electrode assembly of the present invention includes a seed catalyst layer forming process (1), a CNT growing process (2), a CNT entanglement promoting process (3), a catalyst carrying process (4), an ionomer arranging process (5), and a transferring (MEA conversion) process (6). According to the present invention, entanglement of adjacent CNTs can be promoted by the CNT entanglement promoting process (3) and therefore the electrical connection of the CNTs can be ensured. Thus, the output of the cell can be improved.
    Type: Application
    Filed: January 18, 2011
    Publication date: October 31, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Shigeki Hasegawa
  • Publication number: 20130020280
    Abstract: A method of manufacturing a fuel cell includes: growing carbon nanotubes substantially perpendicular to a substrate formed by loading a growth catalyst on a base material; arranging the substrate and a polymer electrolyte membrane so as to oppose to each other and combining the carbon nanotubes with the polymer electrolyte membrane; and dissolving and removing part of the substrate by immersing the substrate in a solution which dissolves the substrate, after the carbon nanotubes and the polymer electrolyte membrane are combined.
    Type: Application
    Filed: April 12, 2011
    Publication date: January 24, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigeki Hasegawa, Yoshihiro Shinozaki, Masahiro Imanishi, Seiji Sano
  • Publication number: 20130022892
    Abstract: A cathode catalyst layer (16) includes electron conducting carbon nanotubes (CNTs) (161) having a hollow space formed at an interior. The CNTs (161) are, in a hollow space forming direction thereof, open at a first end and are closed at a second end. The open end (161a) is disposed so as to be in contact with a gas diffusion layer (22). On the other hand, the closed end (161b) is disposed so as to be in contact with a polymer electrolyte membrane (12). Defects are formed on a surface of the CNTs (161). The defects (161c) are formed so as to communicate between an outer surface of the CNTs (161) and the hollow space. Catalyst particles (162) are provided on the outer surface of the CNTs (161), and an ionomer (163) is provided so as to cover the catalyst particles (162).
    Type: Application
    Filed: April 13, 2011
    Publication date: January 24, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigeki Hasegawa, Yoshihiro Shinozaki, Masahiro Imanishi, Seiji Sano
  • Publication number: 20120214082
    Abstract: A fuel cell is disclosed comprising: a power generation layer including an electrolyte membrane, and an anode and a cathode provided on respective surfaces of the electrolyte membrane; a fuel gas flow path layer located on a side of the anode of the power generation layer to supply a fuel gas to the anode while flowing the fuel gas along a flow direction of the fuel gas approximately orthogonal to a stacking direction in which respective layers of the fuel cell are stacked; and an oxidizing gas flow path layer located on a side of the cathode of the power generation layer to supply an oxidizing gas to the cathode while flowing the oxidizing gas along a flow direction of the oxidizing gas opposed to the flow direction of the fuel gas.
    Type: Application
    Filed: May 21, 2010
    Publication date: August 23, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroaki Takeuchi, Tomohiro Ogawa, Ryouichi Nanba, Takumi Taniguchi, Shinji Jomori, Koichiro Ikeda, Shigeki Hasegawa, Masayuki Ito, Hitoshi Hamada, Naohiro Takeshita
  • Publication number: 20120100463
    Abstract: A method of producing a fuel cell includes: preparing a plurality of carbon nanotubes that are aligned substantially vertically to a plane of a substrate; supporting an electrode catalyst on the carbon nanotubes; forming an electrode layer by disposing an ionomer formed of a first solid polymer electrolyte on a surface of the carbon nanotubes on which the electrode catalyst is supported; and placing the electrode layer to face an electrolyte membrane formed of a second solid polymer electrolyte, which has a glass-transition temperature lower than that of the first solid polymer electrolyte, and bonding the electrolyte membrane to the electrode layer by applying a pressure higher than 5 MPa between the electrolyte membrane and electrode layer at a temperature that is higher than the glass-transition temperature of the second solid polymer electrolyte and that is lower than the glass-transition temperature of the first solid polymer electrolyte.
    Type: Application
    Filed: October 13, 2011
    Publication date: April 26, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Shigeki HASEGAWA
  • Publication number: 20110200896
    Abstract: A fuel cell system operates under at least one of the conditions of no humidity or high temperature, and an operating method thereof, are characterized in that a fuel cell has a fuel gas flow path and an oxidant gas flow path arranged such that fuel gas and oxidant gas flow in opposite directions, a determining apparatus that determines the amount of water near the oxidant gas flow path inlet, and a fuel gas control apparatus which increases the amount of water near the oxidant gas flow path inlet by increasing the fuel gas flowrate and/or reducing the fuel gas pressure if it is determined in the determining apparatus that the amount of water near the oxidant gas flow path inlet is insufficient.
    Type: Application
    Filed: March 23, 2009
    Publication date: August 18, 2011
    Inventors: Shigeki Hasegawa, Masaki Ando, Kenichi Hamada