Patents by Inventor Shigeki Makino

Shigeki Makino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10295555
    Abstract: A signal reference value (SLocal) is set at which a blood coagulation reaction time (T) of a blood coagulation time reference sample measured on the basis of the result of comparing a signal value (amount of transmitted light, amount of scattered light, amount of fluorescence, or turbidity) pertaining to blood coagulation time that varies temporally according to the mixing and reaction of the blood coagulation time reference sample and a reagent and a signal reference value (S) corresponds to an expected value (Te) for the blood coagulation reaction time that has been set beforehand so as to correspond to the blood coagulation time reference sample. As a result, it is possible to use the blood coagulation time reference sample to determine the state of the reagent and enhance the reliability of measurement results by setting a unique signal reference value for each reagent container.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: May 21, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Chie Yabutani, Akihisa Makino, Shigeki Matsubara
  • Patent number: 9110315
    Abstract: An optical device includes a ridge-like optical waveguide portion, a mesa protector portion that is arranged in parallel to the optical waveguide portion, a resin portion that covers upper parts of the mesa protector portion and is disposed at both sides of the mesa protector portion, an electrode that is disposed on the optical waveguide portion, an electrode pad that is disposed on the resin portion located at an opposite side to the optical waveguide portion with respect to the mesa protector portion, and a connection portion that is disposed on the resin portion and electrically connects the electrode to the electrode pad.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: August 18, 2015
    Assignee: Oclaro Japan, Inc.
    Inventors: Akira Nakanishi, Hideo Arimoto, Hiroaki Hayashi, Shigeki Makino, Kazunori Shinoda
  • Patent number: 8965153
    Abstract: A core of an optical waveguide and a core of a waveguide type optical device are adjacently disposed, and a layer is continuously formed at one end of the core of the waveguide type optical device, wherein an effective refractive index of the layer decreases toward a long axis direction of the optical waveguide stripe.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: February 24, 2015
    Assignee: Hitachi Ltd.
    Inventors: Makoto Takahashi, Hideo Arimoto, Kazuhiko Hosomi, Toshihiko Fukamachi, Shigeki Makino, Yasunobu Matsuoka, Toshiki Sugawara
  • Patent number: 8902947
    Abstract: An optical module providing higher reliability during high-speed light modulation and a lower bit error rate when built into a transmitter (transceiver). An optical module contains a taper mirror for surface emission of output light, an optical modulator device, and an optical modulation drive circuit, and the optical modulator device and the optical modulation drive circuit are mounted at positions so as to enclose the taper mirror.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: December 2, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Shigeki Makino, Yasunobu Matsuoka, Kenji Kogo, Toshiki Sugawara, Tatemi Ido
  • Patent number: 8774571
    Abstract: An optical device includes a substrate and a first optical waveguide including a mesa. The mesa includes a first lower clad layer portion, a first core layer portion, and a first upper clad layer portion. The first lower clad layer portion, the first core layer portion, and the first upper clad layer portion are disposed in this order from the substrate side. The optical device also includes a first etch stop layer configured to stop etching when the first optical waveguide is formed. The first etch stop layer being laminated over the substrate. The first optical waveguide is laminated on the first etch stop layer.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: July 8, 2014
    Assignee: Oclaro Japan, Inc.
    Inventors: Kazunori Shinoda, Shigeki Makino, Hideo Arimoto
  • Publication number: 20130322478
    Abstract: Beams of light having wavelengths different from each other are generated in a plurality of light generation portions, the beams of light each generated in the plurality of light generation portions are reflected by a monolithic integrated mirror and are incident to a condenser lens, and emission positions on the condenser lens of the beams of light each generated in the plurality of light generation portions deviate from a central position of the condenser lens by a predetermined amount.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 5, 2013
    Inventors: Koichiro ADACHI, Hideo ARIMOTO, Shigeki MAKINO, Toshiki SUGAWARA
  • Publication number: 20130051725
    Abstract: An optical device includes a substrate and a first optical waveguide including a mesa. The mesa includes a first lower clad layer portion, a first core layer portion, and a first upper clad layer portion. The first lower clad layer portion, the first core layer portion, and the first upper clad layer portion are disposed in this order from the substrate side. The optical device also includes a first etch stop layer configured to stop etching when the first optical waveguide is formed. The first etch stop layer being laminated over the substrate. The first optical waveguide is laminated on the first etch stop layer.
    Type: Application
    Filed: August 21, 2012
    Publication date: February 28, 2013
    Applicant: OCLARO JAPAN, INC.
    Inventors: Kazunori SHINODA, Shigeki MAKINO, Hideo ARIMOTO
  • Publication number: 20120328229
    Abstract: There is provided an optical module including photonic devices set in array, prepared by integrating a plurality of photonic devices with each other in such a state as arranged in such a array as to enable light beams to output in the common direction. The plural photonic devices each include a first electrode, and a second electrode, arranged in the same direction as the plural photonic devices are arranged, and the first and second electrodes of the photonic devices adjacent to each other are disposed such that respective electrode layouts are a mirror image of each other.
    Type: Application
    Filed: June 7, 2012
    Publication date: December 27, 2012
    Applicant: Hitachi, Ltd.
    Inventors: Kenji Kogo, Yasunobu Matsuoka, Shigeki Makino
  • Publication number: 20120314725
    Abstract: An optical device includes a ridge-like optical waveguide portion, a mesa protector portion that is arranged in parallel to the optical waveguide portion, a resin portion that covers upper parts of the mesa protector portion and is disposed at both sides of the mesa protector portion, an electrode that is disposed on the optical waveguide portion, an electrode pad that is disposed on the resin portion located at an opposite side to the optical waveguide portion with respect to the mesa protector portion, and a connection portion that is disposed on the resin portion and electrically connects the electrode to the electrode pad.
    Type: Application
    Filed: June 5, 2012
    Publication date: December 13, 2012
    Applicant: OPNEXT JAPAN, INC
    Inventors: Akira NAKANISHI, Hideo ARIMOTO, Hiroaki HAYASHI, Shigeki MAKINO, Kazunori SHINODA
  • Publication number: 20120250711
    Abstract: An optical module providing higher reliability during high-speed light modulation and a lower bit error rate when built into a transmitter (transceiver). An optical module contains a taper mirror for surface emission of output light, an optical modulator device, and an optical modulation drive circuit, and the optical modulator device and the optical modulation drive circuit are mounted at positions so as to enclose the taper mirror.
    Type: Application
    Filed: January 9, 2012
    Publication date: October 4, 2012
    Applicant: Hitachi, Ltd.
    Inventors: Shigeki MAKINO, Yasunobu MATSUOKA, Kenji KOGO, Toshiki SUGAWARA, Tatemi IDO
  • Patent number: 8068526
    Abstract: A purpose is to provide a semiconductor optical device having good characteristics to be formed on a semi-insulating InP substrate. Firstly, a semi-insulating substrate including a Ru—InP layer on a conductive substrate is used. Secondly, a semi-insulating substrate including a Ru—InP layer on a Ru—InP substrate or an Fe—InP substrate is used and semiconductor layers of an n-type semiconductor layer, a quantum-well layer, and a p-type semiconductor layer are stacked in this order.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: November 29, 2011
    Assignee: Opnext Japan, Inc.
    Inventors: Shigeki Makino, Takeshi Kitatani, Tomonobu Tsuchiya
  • Publication number: 20100328753
    Abstract: An integrated semiconductor optical device and an optical module capable of the high-speed and large-capacity optical transmission are provided. In an integrated semiconductor optical device in which a plurality of optical devices buried with semi-insulating semiconductor materials are integrated on the same semiconductor substrate and an optical module using the integrated semiconductor optical device, configurations (material and electrical characteristics) of the buried layers are made different for each of the optical devices.
    Type: Application
    Filed: June 24, 2010
    Publication date: December 30, 2010
    Inventors: Hiroaki Hayashi, Shigeki Makino, Takeshi Kitatani, Shigehisa Tanaka
  • Patent number: 7809038
    Abstract: In a conventional EA/DFB laser, since the temperature dependence of the operation wavelength of the EA portion is substantially different from that of the DFB portion, the temperature range over which a stable operation is possible is small. In the case of using the EA/DFB laser as a light emission device, an uncooled operation is not possible. An EA/DFB laser which does not require a temperature control mechanism is proposed. A quantum well structure in which a well layer made of any one of InGaAlAs, InGaAsP, and InGaAs, and a barrier layer made of either one of InGaAlAs or InAlAs is used for an optical absorption layer of an EA modulator. By properly determining detuning at a temperature of 25° C. and a composition wavelength of the barrier layer in the quantum well structure used for the optical absorption layer, it can be realized to suppress the insertion loss, maintain the extinction ratio, and reduce chirping simultaneously over a wide temperature range from ?5° C. to 80° C.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: October 5, 2010
    Assignee: Opnext Japan, Inc.
    Inventor: Shigeki Makino
  • Publication number: 20100189154
    Abstract: A purpose is to provide a semiconductor optical device having good characteristics to be formed on a semi-insulating InP substrate. Firstly, a semi-insulating substrate including a Ru—InP layer on a conductive substrate is used. Secondly, a semi-insulating substrate including a Ru—InP layer on a Ru—InP substrate or an Fe—InP substrate is used and semiconductor layers of an n-type semiconductor layer, a quantum-well layer, and a p-type semiconductor layer are stacked in this order.
    Type: Application
    Filed: December 1, 2009
    Publication date: July 29, 2010
    Inventors: Shigeki Makino, Takeshi Kitatani, Tomonobu Tsuchiya
  • Patent number: 7711229
    Abstract: In the optical integrated devices with ridge waveguide structure based on the conventional technology, there occur such troubles as generation of a recess in a BJ section to easily cause a crystal defect due to the mass transport phenomenon of InP when a butt joint (BJ) is grown, lowering of reliability of the devices, and lowering in a yield in fabrication of devices. In the present invention, a protection layer made of InGaAsP is provided on the BJ section. The layer has high etching selectivity for the InP cladding layer and remains on the BJ section even after mesa etching.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: May 4, 2010
    Assignee: Opnext Japan, Inc.
    Inventors: Takeshi Kitatani, Kazunori Shinoda, Takashi Shiota, Shigeki Makino, Toshihiko Fukamachi
  • Patent number: 7577319
    Abstract: A low reflective window structure in an existent electro-absorption optical modulator involves a trading off problem between the increase in the parasitic capacitance and the pile-up. This is because the capacitance density of the pn junction in the window structure is higher compared with the pin junction as the optical absorption region, and the application of electric field to the optical absorption region becomes insufficient in a case of receding the electrode structure from the junction between the optical absorption region and the window structure making it difficult to discharge photo-carriers generated in the optical absorption region.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: August 18, 2009
    Assignee: Opnext Japan, Inc.
    Inventors: Shigeki Makino, Kazunori Shinoda, Takeshi Kitatani
  • Publication number: 20080317422
    Abstract: In the optical integrated devices with ridge waveguide structure based on the conventional technology, there occur such troubles as generation of a recess in a BJ section to easily cause a crystal defect due to the mass transport phenomenon of InP when a butt joint (BJ) is grown, lowering of reliability of the devices, and lowering in a yield in fabrication of devices. In the present invention, a protection layer made of InGaAsP is provided on the BJ section. The layer has high etching selectivity for the InP cladding layer and remains on the BJ section even after mesa etching.
    Type: Application
    Filed: August 23, 2007
    Publication date: December 25, 2008
    Inventors: TAKESHI KITATANI, Kazunori Shinoda, Takashi Shiota, Shigeki Makino, Toshihiko Fukamachi
  • Patent number: 7463663
    Abstract: A conventional semiconductor laser diode is small in optical power at a constant operating current and limited in ridge width when integrated with an optical device, which forces the integration to be performed by lowering the original characteristic and makes it difficult to reduce cost and power consumption. In a semiconductor laser diode, widening of the ridge width is made possible by lowering the difference in refractive indexes between the ridge and other components, diffusion current and increase in the difference of refractive indexes are prevented by forming approximately vertical grooves along both sides of the ridge, and deterioration in characteristics due to regrowth is prevented by forming a diffraction grating on the ridge. The semiconductor laser diode is integrated with an optical device such as electroabsorption type optical modulator without increase of growth cycles and without restriction of the ridge width by using a tapered waveguide.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: December 9, 2008
    Assignee: Opnext Japan, Inc.
    Inventors: Toshihiko Fukamachi, Shigeki Makino, Takafumi Taniguchi, Masahiro Aoki
  • Publication number: 20080219315
    Abstract: A low reflective window structure in an existent electro-absorption optical modulator involves a trading off problem between the increase in the parasitic capacitance and the pile-up. This is because the capacitance density of the pn junction in the window structure is higher compared with the pin junction as the optical absorption region, and the application of electric field to the optical absorption region becomes insufficient in a case of receding the electrode structure from the junction between the optical absorption region and the window structure making it difficult to discharge photo-carriers generated in the optical absorption region.
    Type: Application
    Filed: August 14, 2007
    Publication date: September 11, 2008
    Inventors: SHIGEKI MAKINO, Kazunori Shinoda, Takeshi Kitatani
  • Publication number: 20080137695
    Abstract: A core of an optical waveguide and a core of a waveguide type optical device are adjacently disposed, and a layer is continuously formed at one end of the core of the waveguide type optical device, wherein an effective refractive index of the layer decreases toward a long axis direction of the optical waveguide stripe.
    Type: Application
    Filed: December 5, 2007
    Publication date: June 12, 2008
    Inventors: Makoto Takahashi, Hideo Arimoto, Kazuhiko Hosomi, Toshihiko Fukamachi, Shigeki Makino, Yasunobu Matsuoka, Toshiki Sugawara