Patents by Inventor Shigeki Matsuta

Shigeki Matsuta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140356685
    Abstract: To provide an assembled cell in which problems such as the fast deterioration of only some unit cells positioned in a middle part are solved by realizing smooth heat dissipation from the middle part of the cell even if an outer member is made of a flexible material. A first heat transfer member 6 including bag members 6a made of polycarbonate and filled with silicone gel is provided between a housing 2 and a unit cell assembly 5 in which a plurality of unit cells 10 are stacked, and in a middle part in a direction of stacking of the unit cells 10. The unit cells 10 are each provided with an outer member 18 made of aluminum laminate film.
    Type: Application
    Filed: September 24, 2012
    Publication date: December 4, 2014
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Hiroyuki Okuda, Yoshito Kaga, Shigeki Matsuta, Hiroshi Kondo
  • Patent number: 8852769
    Abstract: A nonaqueous secondary battery includes a current cutoff mechanism that cuts off a current in a short period of time in response to a rise in pressure inside a battery outer body in at least one of a conductive path through which a current is taken out from a positive electrode plate to outside of the battery and a conductive path through which a current is taken out from a negative electrode plate to outside of the battery. At least one type selected from an oligomer containing a cyclohexyl group and a phenyl group, a modified product of the oligomer containing a cyclohexyl group and a phenyl group, a polymer containing a cyclohexyl group and a phenyl group, and a modified product of the polymer containing a cyclohexyl group and a phenyl group is present on the surface of the positive electrode plate.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: October 7, 2014
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Masahiro Iyori, Hirofusa Tanaka, Naoki Terada, Seiji Omura, Yasuhiro Yamauchi, Toshiyuki Nohma, Masahide Miyake, Yasuyuki Kusumoto, Shigeki Matsuta, Toyoki Fujihara, Takeshi Yoshida
  • Patent number: 8609279
    Abstract: A rechargeable lithium battery including a negative electrode made by depositing a noncrystalline thin film composed entirely or mainly of silicon on a current collector, a positive electrode and a nonaqueous electrolyte, characterized in that said nonaqueous electrolyte contains carbon dioxide dissolved therein.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: December 17, 2013
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Daizo Jito, Noriyuki Tamura, Nobuhiro Sakitani, Hiroshi Minami, Hiromasa Yagi, Maruo Kamino, Katsunobu Sayama, Yoshio Kato, Shigeki Matsuta
  • Patent number: 8388703
    Abstract: A method for producing a non-aqueous electrolyte secondary cell by preparing a positive electrode by applying a positive electrode mixture onto a positive electrode core material, the mixture containing a positive electrode active material mainly made of a lithium nickel composite oxide and a binding agent containing polyvinylidene fluoride; measuring the amount of carbon dioxide gas generated when a layer of the positive electrode mixture is removed out of the positive electrode and the layer is heated to 200° C. or higher and 400° C. or lower in an inactive gas atmosphere; selecting a positive electrode satisfying the following formulas: y<(0.27x?51)/1000000(200?x<400)??formula 1 y<57/1000000(400?x?1500)??formula 2 where x is a heating temperature (° C.) and y is the amount of carbon dioxide gas (mole/g) per 1 g of the lithium nickel composite oxide measured; and preparing the non-aqueous electrolyte secondary cell by using the positive electrode selected.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: March 5, 2013
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Katsutoshi Takeda, Yoshio Kato, Shingo Tode, Masanori Maekawa, Shigeki Matsuta
  • Publication number: 20130004837
    Abstract: Disclosed is a nonaqueous electrolyte secondary battery which has a negative electrode containing silicon as a negative active material, a positive electrode containing a positive active material, a nonaqueous electrolyte and a separator. Characteristically, an additive which retards oxidation of silicon during operation of the battery is contained either in an interior or surface portion of the positive electrode, in an interior or surface portion of the negative electrode, or in an interior or surface portion of the separator.
    Type: Application
    Filed: September 7, 2012
    Publication date: January 3, 2013
    Inventors: Hidekazu YAMAMOTO, Keiji SAISHO, Yoshio KATO, Shigeki MATSUTA
  • Publication number: 20120280172
    Abstract: A method for producing a non-aqueous electrolyte secondary cell by preparing a positive electrode by applying a positive electrode mixture onto a positive electrode core material, the mixture containing a positive electrode active material mainly made of a lithium nickel composite oxide and a binding agent containing polyvinylidene fluoride; measuring the amount of carbon dioxide gas generated when a layer of the positive electrode mixture is removed out of the positive electrode and the layer is heated to 200° C. or higher and 400° C. or lower in an inactive gas atmosphere; selecting a positive electrode satisfying the following formulas: y<(0.27x?51)/1000000(200?x<400)??formula 1 y<57/1000000(400?x?1500)??formula 2 where x is a heating temperature (° C.) and y is the amount of carbon dioxide gas (mole/g) per 1 g of the lithium nickel composite oxide measured; and preparing the non-aqueous electrolyte secondary cell by using the positive electrode selected.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 8, 2012
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Katsutoshi Takeda, Yoshio Kato, Shingo Tode, Masanori Maekawa, Shigeki Matsuta
  • Publication number: 20120180549
    Abstract: A positive electrode active material quality judgment method that can easily and accurately judge the quality of a positive electrode active material used in a non-aqueous electrolyte secondary cell without having to complete the positive electrode. The positive electrode active material quality judgment method includes: heating a positive electrode active material mainly made of a lithium nickel composite oxide to a temperature x (° C.) of 200° C. or higher and 1500° C. or lower; measuring the amount of carbon dioxide gas occurring from the heating; and the positive electrode active material as a suitable positive electrode active material when the positive electrode active material satisfies formulas 1 and 2: y<(0.27x?51)/1000000(200?x<400)??formula 1 y<57/1000000(400?x?1500)??formula 2 where x is the heating temperature x (° C.) and y is the amount of carbon dioxide gas (mole/g) occurring per 1 g of the positive electrode active material in the heating to the heating temperature x (° C.).
    Type: Application
    Filed: March 28, 2012
    Publication date: July 19, 2012
    Applicant: SANYO Electric Co., Ltd.
    Inventors: Katsutoshi Takeda, Yoshio Kato, Shingo Tode, Masanori Maekawa, Shigeki Matsuta
  • Patent number: 8197556
    Abstract: A method for producing a non-aqueous electrolyte secondary cell by preparing a positive electrode by applying a positive electrode mixture onto a positive electrode core material, the mixture containing a positive electrode active material mainly made of a lithium nickel composite oxide and a binding agent containing polyvinylidene fluoride; measuring the amount of carbon dioxide gas generated when a layer of the positive electrode mixture is removed out of the positive electrode and the layer is heated to 200° C. or higher and 400° C. or lower in an inactive gas atmosphere; selecting a positive electrode satisfying the following formulas: y<(1.31x?258)/1000000(200?x<300)??formula 3 y<1.20x?225/1000000(300?x?400)??formula 4 where x is a heating temperature (° C.) and y is the amount of carbon dioxide gas (mole/g) per 1 g of the lithium nickel composite oxide measured; and preparing the non-aqueous electrolyte secondary cell by using the positive electrode selected.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: June 12, 2012
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Katsutoshi Takeda, Yoshio Kato, Shingo Tode, Masanori Maekawa, Shigeki Matsuta
  • Publication number: 20120107652
    Abstract: A nonaqueous secondary battery includes a current cutoff mechanism that cuts off a current in a short period of time in response to a rise in pressure inside a battery outer body in at least one of a conductive path through which a current is taken out from a positive electrode plate to outside of the battery and a conductive path through which a current is taken out from a negative electrode plate to outside of the battery. At least one type selected from an oligomer containing a cyclohexyl group and a phenyl group, a modified product of the oligomer containing a cyclohexyl group and a phenyl group, a polymer containing a cyclohexyl group and a phenyl group, and a modified product of the polymer containing a cyclohexyl group and a phenyl group is present on the surface of the positive electrode plate.
    Type: Application
    Filed: October 24, 2011
    Publication date: May 3, 2012
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Masahiro Iyori, Hirofusa Tanaka, Naoki Terada, Seiji Omura, Yasuhiro Yamauchi, Toshiyuki Nohma, Masahide Miyake, Yasuyuki Kusumoto, Shigeki Matsuta, Toyoki Fujihara, Takeshi Yoshida
  • Patent number: 8166794
    Abstract: A positive electrode active material quality judgment method that can easily and accurately judge the quality of a positive electrode active material used in a non-aqueous electrolyte secondary cell without having to complete the positive electrode. The positive electrode active material quality judgment method includes: heating a positive electrode active material mainly made of a lithium nickel composite oxide to a temperature x (° C.) of 200° C. or higher and 400° C. or lower; measuring the amount of carbon dioxide gas generated from the heating; and the positive electrode active material as a suitable positive electrode active material when the positive electrode active material satisfies formulas 3 and 4: y<(1.31x?258)/1000000(200?x<300)??formula 3 y<1.20x?225/1000000(300?x?400)??formula 4 where x is the heating temperature x (° C.) and y is the amount of carbon dioxide gas (mole/g) generated per 1 g of the positive electrode active material in the heating to the heating temperature x (° C.).
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: May 1, 2012
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Katsutoshi Takeda, Yoshio Kato, Shingo Tode, Masanori Maekawa, Shigeki Matsuta
  • Patent number: 8153302
    Abstract: A method of producing an active material for a lithium secondary battery, by which impurities causing problems in synthesizing an active material for a lithium secondary battery, including a lithium transition metal oxyanion compound are removed efficiently and enhancement of an energy density is realized, is provided. By cleaning the active material for a lithium secondary battery, including a lithium transition metal oxyanion compound, with a pH buffer solution, for example, it is possible to efficiently remove just only impurities such as Li3PO4 or Li2CO3, or a substance, other than LiFePO4, in which the valence of Fe is bivalent such as FeSO4, FeO or Fe3(PO4)2 without dissolving Fe of LiFePO4.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: April 10, 2012
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Denis Yau Wai Yu, Kazunori Donoue, Toshikazu Yoshida, Tetsuo Kadohata, Tetsuyuki Murata, Shigeki Matsuta
  • Publication number: 20120079712
    Abstract: A method of producing an active material for a lithium secondary battery, by which impurities causing problems in synthesizing an active material for a lithium secondary battery, including a lithium transition metal oxyanion compound are removed efficiently and enhancement of an energy density is realized, is provided. By cleaning the active material for a lithium secondary battery, including a lithium transition metal oxyanion compound, with a pH buffer solution, for example, it is possible to efficiently remove just only impurities such as Li3PO4 or Li2CO3, or a substance, other than LiFePO4, in which the valence of Fe is bivalent such as FeSO4, FeO or Fe3(PO4)2 without dissolving Fe of LiFePO4.
    Type: Application
    Filed: December 9, 2011
    Publication date: April 5, 2012
    Inventors: Denis Yau Wai YU, Kazunori Donoue, Toshikazu Yoshida, Tetsuo Kadohata, Tetsuyuki Murata, Shigeki Matsuta
  • Publication number: 20110217599
    Abstract: Disclosed is a nonaqueous electrolyte secondary battery which has a negative electrode containing silicon as a negative active material, a positive electrode containing a positive active material, a nonaqueous electrolyte and a separator. Characteristically, an additive which retards oxidation of silicon during operation of the battery is contained either in an interior or surface portion of the positive electrode, or in an interior or surface portion of the negative electrode, or in an interior or surface portion of the separator.
    Type: Application
    Filed: April 7, 2011
    Publication date: September 8, 2011
    Inventors: Hidekazu Yamamoto, Keiji Saisho, Yoshio Kato, Shigeki Matsuta
  • Publication number: 20110159344
    Abstract: According to the invention, there can be provided a non-aqueous electrolyte secondary cell whose capacity is hardly decreased even stored at high temperatures in a charged state. The non-aqueous electrolyte secondary cell uses an insulation adhesive tape composed of a base material and a glue material. And in an absorbance spectra of the glue material measured using an infrared spectrophotometer so that the maximum peak intensity is 5 to 20% in transmittance, when peak intensities for C—H stretching vibration of 3040 to 2835 cm?1 and C?O stretching vibration of 1870 to 1560 cm?1 are respectively defined as I(C—H) and I(C?O), a peak intensity ratio represented by I(C?O)/I(C—H) is 0.01 or less.
    Type: Application
    Filed: December 23, 2010
    Publication date: June 30, 2011
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Kazuma Kobayashi, Yohei Hirota, Yuki Morikawa, Yoshio Kato, Yasuyuki Kusumoto, Shigeki Matsuta
  • Publication number: 20110129735
    Abstract: A method of manufacturing an active material for a non-aqueous electrolyte battery, the active material containing a lithium-containing vanadium oxide, is provided. The active material for a non-aqueous electrolyte battery is washed with water or an acidic aqueous solution. By dissolving pentavalent vanadium, which is toxic, in water or an acidic aqueous solution, the pentavalent vanadium can be removed from the active material.
    Type: Application
    Filed: November 30, 2010
    Publication date: June 2, 2011
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Mai Yokoi, Yuu Takanashi, Masahide Miyake, Yasuyuki Kusumoto, Shigeki Matsuta, Shinnosuke Ichikawa
  • Patent number: 7923148
    Abstract: Disclosed is a nonaqueous electrolyte secondary battery which has a negative electrode containing silicon as a negative active material, a positive electrode containing a positive active material, a nonaqueous electrolyte and a separator. Characteristically, an additive which retards oxidation of silicon during operation of the battery is contained either in an interior or surface portion of the positive electrode, or in an interior or surface portion of the negative electrode, or in an interior or surface portion of the separator.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: April 12, 2011
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Hidekazu Yamamoto, Keiji Saisho, Yoshio Kato, Shigeki Matsuta
  • Patent number: 7794881
    Abstract: An electrode for a lithium battery having a thin film composed of active material capable of lithium storage and release, e.g., a microcrystalline or amorphous silicon thin film, provided on a current collector, the electrode being characterized in that a constituent of the current collector is diffused into the thin film.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: September 14, 2010
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Masahisa Fujimoto, Shin Fujitani, Masaki Shima, Hiromasa Yagi, Hisaki Tarui, Hiroshi Kurokawa, Shigeki Matsuta, Yoichi Domoto, Yoshio Kato, Hiroshi Nakajima, Hiroaki Ikeda, Kenji Asaoka, Ryuji Ohshita
  • Publication number: 20090291355
    Abstract: The present invention provides a non-aqueous electrolyte battery, etc. that can reduce the manufacturing cost of the battery, meet the need for increased battery capacity, and at the same time improve various battery characteristics, such as high-rate charge-discharge capability, high-temperature cycle performance, and storage performance. A porous layer (32) is disposed between a separator and a negative electrode (13). The porous layer has a non-aqueous electrolyte permeability higher than that in TD of the separator. An excess electrolyte is contained in at least a portion of an internal space of a battery case that is other than an electrode assembly, and the excess electrolyte and at least a portion of the porous layer are in contact with each other.
    Type: Application
    Filed: September 19, 2006
    Publication date: November 26, 2009
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Yasunori Baba, Naoki Imachi, Yuko Sibutani, Akira Mikami, Hiroyuki Fujimoto, Shigeki Matsuta, Shin Fujitani
  • Patent number: 7592099
    Abstract: An electrode for a lithium secondary battery includes a thin film of an active material having a first phase that reacts with Li dominantly and a second phase that reacts less readily with Li than the first phase and exists at least before initial-cycle charging and after discharging in each cycle following the initial cycle. A surface of the current collector has an arithmetical mean roughness Ra of 0.1 ?m or greater. A surface of the thin film has irregularities formed corresponding to the irregularities of the current collector surface. By the charging and discharging in the initial cycle and thereafter, gaps form along the thin-film thickness on lines connecting valleys in the thin-film surface irregularities and valleys in the current-collector surface irregularities, and the thin film is divided into columnar or insular structures by the gaps.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: September 22, 2009
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Noriyuki Tamura, Yoshio Kato, Shigeki Matsuta, Maruo Kamino
  • Publication number: 20090119908
    Abstract: A method for producing with a high yield a high performance non-aqueous electrolyte secondary cell with a reduced cost is provided. The method includes the steps of: a baking step of baking a positive electrode active material precursor containing a lithium source and a nickel source in order to render the positive electrode active material precursor a lithium nickel composite oxide; a measuring step of measuring the amount of carbon dioxide gas occurring when the lithium nickel composite oxide is heated to 200° C. or higher and 1500° C. or lower in an inactive gas atmosphere; a selecting step of selecting a lithium nickel composite oxide satisfying the following formulas: y<(0.27x?51)/1000000(200?x<400)??formula 1 y<57/1000000(400?x?1500)??formula 2 where x is a heating temperature (° C.
    Type: Application
    Filed: November 11, 2008
    Publication date: May 14, 2009
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Katsutoshi TAKEDA, Yoshio KATO, Shingo TODE, Masanori MAEKAWA, Shigeki MATSUTA