Patents by Inventor Shigemitsu Hara

Shigemitsu Hara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10548212
    Abstract: Ion beams are efficiently extracted with an accelerator that includes a circular vacuum container including a pair of circular return yokes facing each other. Six magnetic poles are radially disposed from the injection electrode at the periphery thereof in the return yoke. Six recessions are disposed alternately with the respective magnetic poles in the circumferential direction of the return yoke. In the vacuum container, a concentric trajectory region, in which multiple beam turning trajectories centered around the injection electrode are present, is formed, and an eccentric trajectory region, in which multiple beam turning trajectories eccentric from the injection electrode are present, is formed around the region. In the eccentric trajectory region, the beam turning trajectories are dense between the injection electrode and the inlet of the beam extraction path. Gaps between the beam turning trajectories are wide in a direction 180° opposite to the inlet of the beam extraction path.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: January 28, 2020
    Assignee: Hitachi, Ltd.
    Inventors: Takamichi Aoki, Fuutarou Ebina, Masumi Umezawa, Shigemitsu Hara, Hideaki Nishiuchi, Takayoshi Seki
  • Patent number: 10306745
    Abstract: An accelerator 4 includes a circular vacuum container including circular return yokes 5A, 5B. An injection electrode 18 is disposed closer to an inlet of a beam extraction path 20 in the return yoke 5B than a central axis C of the vacuum container. Magnetic poles 7A to 7F are radially disposed from the injection electrode 18 at the periphery of the injection electrode 18 in the return yoke 5B. Recessions 29A to 29F are disposed alternately with the magnetic poles 7A to 7F in the circumferential direction of the return yoke 5B. In the vacuum container, a concentric trajectory region, in which multiple beam turning trajectories centered around the injection electrode 18 are present, is formed, and an eccentric trajectory region, in which multiple beam turning trajectories eccentric from the injection electrode 18 are present, is formed around the region.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: May 28, 2019
    Assignee: Hitachi, Ltd.
    Inventors: Takamichi Aoki, Fuutarou Ebina, Hideaki Nishiuchi, Shigemitsu Hara, Masumi Umezawa, Takayoshi Seki
  • Patent number: 10117320
    Abstract: The accelerator includes a circular vacuum container which contains a circular return yoke. With respect to the central axis of the vacuum container, an incidence electrode is arranged towards the entrance of a beam emission path inside of the return yoke. Inside of the return yoke, electrodes are arranged radially from the incidence electrode in the periphery of the incidence electrode. Recesses are arranged alternately with the electrodes in the circumferential direction of the return yoke. In the vacuum container, an orbit-concentric region is formed in which multiple beam orbits centered on the incidence electrode are present, and, in the periphery of said region, an orbit-eccentric area is formed in which multiple beam orbits eccentric to the incidence electrode are present. In the orbit-eccentric region, the beam orbits between the incidence electrode and the entrance to the beam emission path are denser.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: October 30, 2018
    Assignee: Hitachi, Ltd.
    Inventors: Takamichi Aoki, Futaro Ebina, Hideaki Nishiuchi, Shigemitsu Hara, Masumi Umezawa, Takayoshi Seki
  • Publication number: 20170339778
    Abstract: Ion beams are efficiently extracted with an accelerator that includes a circular vacuum container including a pair of circular return yokes facing each other. Six magnetic poles are radially disposed from the injection electrode at the periphery thereof in the return yoke. Six recessions are disposed alternately with the respective magnetic poles in the circumferential direction of the return yoke. In the vacuum container, a concentric trajectory region, in which multiple beam turning trajectories centered around the injection electrode are present, is formed, and an eccentric trajectory region, in which multiple beam turning trajectories eccentric from the injection electrode are present, is formed around the region. In the eccentric trajectory region, the beam turning trajectories are dense between the injection electrode and the inlet of the beam extraction path. Gaps between the beam turning trajectories are wide in a direction 180° opposite to the inlet of the beam extraction path.
    Type: Application
    Filed: December 8, 2014
    Publication date: November 23, 2017
    Inventors: Takamichi AOKI, Fuutarou EBINA, Masumi UMEZAWA, Shigemitsu HARA, Hideaki NISHIUCHI, Takayoshi SEKI
  • Publication number: 20170318657
    Abstract: An accelerator 4 includes a circular vacuum container including circular return yokes 5A, 5B. An injection electrode 18 is disposed closer to an inlet of a beam extraction path 20 in the return yoke 5B than a central axis C of the vacuum container. Magnetic poles 7A to 7F are radially disposed from the injection electrode 18 at the periphery of the injection electrode 18 in the return yoke 5B. Recessions 29A to 29F are disposed alternately with the magnetic poles 7A to 7F in the circumferential direction of the return yoke 5B. In the vacuum container, a concentric trajectory region, in which multiple beam turning trajectories centered around the injection electrode 18 are present, is formed, and an eccentric trajectory region, in which multiple beam turning trajectories eccentric from the injection electrode 18 are present, is formed around the region.
    Type: Application
    Filed: December 8, 2014
    Publication date: November 2, 2017
    Inventors: Takamichi AOKI, Fuutarou EBINA, Hideaki NISHIUCHI, Shigemitsu HARA, Masumi UMEZAWA, Takayoshi SEKI
  • Publication number: 20170303384
    Abstract: The accelerator includes a circular vacuum container which contains a circular return yoke. With respect to the central axis of the vacuum container, an incidence electrode is arranged towards the entrance of a beam emission path inside of the return yoke. Inside of the return yoke, electrodes are arranged radially from the incidence electrode in the periphery of the incidence electrode. Recesses are arranged alternately with the electrodes in the circumferential direction of the return yoke. In the vacuum container, an orbit-concentric region is formed in which multiple beam orbits centered on the incidence electrode are present, and, in the periphery of said region, an orbit-eccentric area is formed in which multiple beam orbits eccentric to the incidence electrode are present. In the orbit-eccentric region, the beam orbits between the incidence electrode and the entrance to the beam emission path are denser.
    Type: Application
    Filed: December 8, 2014
    Publication date: October 19, 2017
    Applicant: Hitachi, Ltd.
    Inventors: Takamichi AOKI, Futaro EBINA, Hideaki NISHIUCHI, Shigemitsu HARA, Masumi UMEZAWA, Takayoshi SEKI
  • Publication number: 20150084548
    Abstract: A circular accelerator of the present invention includes an electrode that applies a high frequency electric field for accelerating a charged particle beam, an electromagnetic device that bends the charged particle beam, and a direct current (or DC) power supply device that applies a direct current (or DC) electric field to the previous described electrode.
    Type: Application
    Filed: August 12, 2014
    Publication date: March 26, 2015
    Inventors: Shigemitsu HARA, Fumiaki NODA, Takamichi AOKI
  • Patent number: 6800866
    Abstract: To provide an accelerator system having a wide ion beam current control range, being capable of operating with low power consumption and a long maintenance interval and being capable of preventing unnecessarily large dose of the ion beam for irradiation from erroneously being supplied to the downstream side of the system. In an accelerator system designed to treat the patient with irradiation of a high-energy ion beam accelerated by a post-accelerator 4 comprising a synchrotron in irradiation rooms 6 to 8, a value of ion beam current to be supplied to the post-accelerator 4 is controlled by a pre-accelerator comprising an ion source 10, quadrupole electromagnet 15, radio frequency quadrupole accelerator 17 and a drift tube type accelerator 19. The accelerator system featuring low power consumption, a long maintenance interval and high reliability can be made available.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: October 5, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Kensuke Amemiya, Kazuo Hiramoto, Masanobu Tanaka, Shigemitsu Hara
  • Publication number: 20030048080
    Abstract: To provide an accelerator system having a wide ion beam current control range, being capable of operating with low power consumption and a long maintenance interval and being capable of preventing unnecessarily large does of the ion beam for irradiation from erroneously being supplied to the downstream side of the system.
    Type: Application
    Filed: March 20, 2002
    Publication date: March 13, 2003
    Applicant: Hitachi, Ltd.
    Inventors: Kensuke Amemiya, Kazuo Hiramoto, Masanobu Tanaka, Shigemitsu Hara