Patents by Inventor Shigeo Maruyama

Shigeo Maruyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11854751
    Abstract: The present invention provides a light-transmitting electrode which has high electrical conductivity and high electron blocking performance. The present invention also provides a solar cell which is capable of achieving high energy conversion efficiency at low cost. The present invention provides a method for producing a light-transmitting electrode that has a light-transmitting substrate, a carbon nanotube film which is formed directly or indirectly on the light-transmitting substrate, and a metal oxide film which is formed directly on the carbon nanotube film. This production method includes vapor depositing the metal oxide film, which contains oxygen and a metal element belonging to the group 4, 5 or 6 of the periodic table, on one surface or both surfaces of the carbon nanotube film. The present invention provides a light-transmitting electrode which includes a light-transmitting substrate and a conductive carbon nanotube film that is formed directly or indirectly on the light-transmitting substrate.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: December 26, 2023
    Assignees: The University of Tokyo, Aalto University, Denso Corporation
    Inventors: Shigeo Maruyama, Yutaka Matsuo, Il Jeon, Kehang Cui, Esko I. Kauppinen, Albert G. Nasibulin
  • Patent number: 11702340
    Abstract: The present invention provides a laminate structure in which the properties of a single-walled CNT, which are susceptible to surrounding environment, are stabilized by protecting the surface of the single-walled CNT with a proper substance, and/or another property is imparted to the single-walled CNT. The present invention provides a structure which comprises a first single-walled carbon nanotube having a length of 50 nm or longer, preferably 100 nm or longer, and a second layer laminated on the first single-walled carbon nanotube, wherein the second layer comprises at least one substance selected from the group A consisting of first boron nitride, first transition metal dichalcogenide, second carbon, first black phosphorus and first silicon.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: July 18, 2023
    Assignee: THE UNIVERSITY OF TOKYO
    Inventors: Shigeo Maruyama, Rong Xiang, Taiki Inoue
  • Publication number: 20210193397
    Abstract: The present invention provides a light-transmitting electrode which has high electrical conductivity and high electron blocking performance. The present invention also provides a solar cell which is capable of achieving high energy conversion efficiency at low cost. The present invention provides a method for producing a light-transmitting electrode that has a light-transmitting substrate, a carbon nanotube film which is formed directly or indirectly on the light-transmitting substrate, and a metal oxide film which is formed directly on the carbon nanotube film. This production method includes vapor depositing the metal oxide film, which contains oxygen and a metal element belonging to the group 4, 5 or 6 of the periodic table, on one surface or both surfaces of the carbon nanotube film. The present invention provides a light-transmitting electrode which includes a light-transmitting substrate and a conductive carbon nanotube film that is formed directly or indirectly on the light-transmitting substrate.
    Type: Application
    Filed: January 15, 2021
    Publication date: June 24, 2021
    Inventors: Shigeo Maruyama, Yutaka Matsuo, Il Jeon, Kehang Cui, Esko I. Kauppinen, Albert G. Nasibulin
  • Patent number: 11005046
    Abstract: In order to obtain a carbon nanotube array including no m-CNTs through simple steps using a mechanism that is different from thermocapillary flow, there are provided a process for producing a carbon nanotube array including (A) a step of preparing a carbon nanotube array in which m-CNTs and s-CNTs are horizontally aligned; (B) a step of forming an organic layer on the carbon nanotube array; (C) a step of applying voltage to the carbon nanotube array in a long axis direction of the carbon nanotubes constituting the carbon nanotube array in the air; and (D) a step of removing the organic layer, and a carbon nanotube array obtained by the process.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: May 11, 2021
    Assignees: THE UNIVERSITY OF TOKYO, DENSO CORPORATION
    Inventors: Shigeo Maruyama, Shohei Chiashi, Keigo Ohtsuka, Taiki Inoue
  • Patent number: 10930442
    Abstract: The present invention provides a light-transmitting electrode which has high electrical conductivity and high electron blocking performance. The present invention also provides a solar cell which is capable of achieving high energy conversion efficiency at low cost. The present invention provides a method for producing a light-transmitting electrode that has a light-transmitting substrate, a carbon nanotube film which is formed directly or indirectly on the light-transmitting substrate, and a metal oxide film which is formed directly on the carbon nanotube film. This production method includes vapor depositing the metal oxide film, which contains oxygen and a metal element belonging to the group 4, 5 or 6 of the periodic table, on one surface or both surfaces of the carbon nanotube film. The present invention provides a light-transmitting electrode which includes a light-transmitting substrate and a conductive carbon nanotube film that is formed directly or indirectly on the light-transmitting substrate.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: February 23, 2021
    Assignees: University of Tokyo, Aalto University, Denso Corporation
    Inventors: Shigeo Maruyama, Yutaka Matsuo, Il Jeon, Kehang Cui, Esko I Kauppinen, Albert G Nasibulin
  • Publication number: 20200399128
    Abstract: The present invention provides a laminate structure in which the properties of a single-walled CNT, which are susceptible to surrounding environment, are stabilized by protecting the surface of the single-walled CNT with a proper substance, and/or another property is imparted to the single-walled CNT. The present invention provides a structure which comprises a first single-walled carbon nanotube having a length of 50 nm or longer, preferably 100 nm or longer, and a second layer laminated on the first single-walled carbon nanotube, wherein the second layer comprises at least one substance selected from the group A consisting of first boron nitride, first transition metal dichalcogenide, second carbon, first black phosphorus and first silicon.
    Type: Application
    Filed: March 7, 2019
    Publication date: December 24, 2020
    Inventors: Shigeo MARUYAMA, Rong XIANG, Taiki INOUE
  • Publication number: 20190334091
    Abstract: In order to obtain a carbon nanotube array including no m-CNTs through simple steps using a mechanism that is different from thermocapillary flow, there are provided a process for producing a carbon nanotube array including (A) a step of preparing a carbon nanotube array in which m-CNTs and s-CNTs are horizontally aligned; (B) a step of forming an organic layer on the carbon nanotube array; (C) a step of applying voltage to the carbon nanotube array in a long axis direction of the carbon nanotubes constituting the carbon nanotube array in the air; and (D) a step of removing the organic layer, and a carbon nanotube array obtained by the process.
    Type: Application
    Filed: July 8, 2019
    Publication date: October 31, 2019
    Applicant: THE UNIVERSITY OF TOKYO
    Inventors: Shigeo MARUYAMA, Shohei CHIASHI, Keigo OHTSUKA, Taiki INOUE
  • Patent number: 10155663
    Abstract: The invention provides a composite comprising a substrate and a membrane of vertically aligned carbon nanotubes formed on the substrate which membrane is independent of the material of the substrate and a process for the production of the same. A process for producing the first composite comprising the first substrate and vertically aligned carbon nanotubes formed on the first substrate which comprises the step (a) of preparing the second composite comprising the second substrate made of quartz or silicon and vertically aligned carbon nanotubes formed on the second substrate, the step (b) of subjecting the second composite to water immersion wherein the temperature (Tw) of the water is higher than the temperature (Tc) of the second composite with a temperature difference ?T (=Tw?Tc) of at least 25° C.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: December 18, 2018
    Assignees: The University of Tokyo, DENSO CORPORATION
    Inventors: Shigeo Maruyama, Yoichi Murakami
  • Patent number: 9944527
    Abstract: Disclosed are a method for producing a carbon nanotube (CNT) whereby, in the local synthesis of CNTs, a high resolution, a low cost, easiness in production and mass production capability can be established at the same time; and a two-dimensionally patterned CNT obtained thereby.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: April 17, 2018
    Assignee: The University of Tokyo
    Inventors: Shigeo Maruyama, Rong Xiang
  • Patent number: 9847181
    Abstract: The present invention provides: a film that comprises single-layer carbon nanotubes having shapes which enable the characteristics thereof to be sufficiently exhibited; and a process for producing the film. The film, which comprises single-layer carbon nanotubes, has portions where single-layer carbon nanotubes are densely present and portions where single-layer carbon nanotubes are sparsely present, the dense portions forming a pseudo-honeycomb structure in a surface of the film.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: December 19, 2017
    Assignee: THE UNIVERSITY OF TOKYO
    Inventors: Shigeo Maruyama, Shohei Chiashi, Kehang Cui
  • Publication number: 20170316887
    Abstract: The present invention provides a light-transmitting electrode which has high electrical conductivity and high electron blocking performance. The present invention also provides a solar cell which is capable of achieving high energy conversion efficiency at low cost. The present invention provides a method for producing a light-transmitting electrode that has a light-transmitting substrate, a carbon nanotube film which is formed directly or indirectly on the light-transmitting substrate, and a metal oxide film which is formed directly on the carbon nanotube film. This production method includes vapor depositing the metal oxide film, which contains oxygen and a metal element belonging to the group 4, 5 or 6 of the periodic table, on one surface or both surfaces of the carbon nanotube film. The present invention provides a light-transmitting electrode which includes a light-transmitting substrate and a conductive carbon nanotube film that is formed directly or indirectly on the light-transmitting substrate.
    Type: Application
    Filed: September 2, 2015
    Publication date: November 2, 2017
    Inventors: Shigeo Maruyama, Yutaka Matsuo, Il Jeon, Kehang Cui, Esko I Kauppinen, Albert G Nasibulin
  • Publication number: 20170271090
    Abstract: The present invention provides: a film that comprises single-layer carbon nanotubes having shapes which enable the characteristics thereof to be sufficiently exhibited; and a process for producing the film. The film, which comprises single-layer carbon nanotubes, has portions where single-layer carbon nanotubes are densely present and portions where single-layer carbon nanotubes are sparsely present, the dense portions forming a pseudo-honeycomb structure in a surface of the film.
    Type: Application
    Filed: June 1, 2017
    Publication date: September 21, 2017
    Applicants: THE UNIVERSITY OF TOKYO, SHOWA DENKO K.K.
    Inventors: Shigeo MARUYAMA, Shohei CHIASHI, Kehang CUI
  • Publication number: 20170077407
    Abstract: In order to obtain a carbon nanotube array including no m-CNTs through simple steps using a mechanism that is different from thermocapillary flow, there are provided a process for producing a carbon nanotube array including (A) a step of preparing a carbon nanotube array in which m-CNTs and s-CNTs are horizontally aligned; (B) a step of forming an organic layer on the carbon nanotube array; (C) a step of applying voltage to the carbon nanotube array in a long axis direction of the carbon nanotubes constituting the carbon nanotube array in the air; and (D) a step of removing the organic layer, and a carbon nanotube array obtained by the process.
    Type: Application
    Filed: February 27, 2015
    Publication date: March 16, 2017
    Applicants: SHOWA DENKO K.K., THE UNIVERSITY OF TOKYO
    Inventors: Shigeo MARUYAMA, Shohei CHIASHI, Keigo OHTSUKA, Taiki INOUE
  • Publication number: 20160332884
    Abstract: The invention provides a composite comprising a substrate and a membrane of vertically aligned carbon nanotubes formed on the substrate which membrane is independent of the material of the substrate and a process for the production of the same. A process for producing the first composite comprising the first substrate and vertically aligned carbon nanotubes formed on the first substrate which comprises the step (a) of preparing the second composite comprising the second substrate made of quartz or silicon and vertically aligned carbon nanotubes formed on the second substrate, the step (b) of subjecting the second composite to water immersion wherein the temperature (Tw) of the water is higher than the temperature (Tc) of the second composite with a temperature difference ?T (=Tw?Tc) of at least 25° C.
    Type: Application
    Filed: July 25, 2016
    Publication date: November 17, 2016
    Applicant: The University of Tokyo
    Inventors: Shigeo Maruyama, Yoichi Murakami
  • Publication number: 20160176712
    Abstract: Disclosed are a method for producing a carbon nanotube (CNT) whereby, in the local synthesis of CNTs, a high resolution, a low cost, easiness in production and mass production capability can be established at the same time; and a two-dimensionally patterned CNT obtained thereby.
    Type: Application
    Filed: February 16, 2016
    Publication date: June 23, 2016
    Applicant: The University of Tokyo
    Inventors: Shigeo Maruyama, Rong Xiang
  • Publication number: 20160012975
    Abstract: The present invention provides: a film that comprises single-layer carbon nanotubes having shapes which enable the characteristics thereof to be sufficiently exhibited; and a process for producing the film. The film, which comprises single-layer carbon nanotubes, has portions where single-layer carbon nanotubes are densely present and portions where single-layer carbon nanotubes are sparsely present, the dense portions forming a pseudo-honeycomb structure in a surface of the film.
    Type: Application
    Filed: March 3, 2014
    Publication date: January 14, 2016
    Applicants: SHOWA DENKO K.K., THE UNIVERSITY OF TOKYO
    Inventors: Shigeo MARUYAMA, Shohei CHIASHI, Kehang CUI
  • Patent number: 8758716
    Abstract: An atmosphere of a carbon source comprising an oxygenic compound is brought into contact with a catalyst with heating to yield single-walled carbon nanotubes. The carbon source comprising an oxygenic compound preferably is an alcohol and/or ether. The catalyst preferably is a metal. The heating temperature is preferably 500 to 1,500° C. The single-walled carbon nanotubes thus obtained contain no foreign substances and have satisfactory quality with few defects.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: June 24, 2014
    Assignees: Toudai Tlo, Ltd., Toray Industries, Inc
    Inventors: Shigeo Maruyama, Masahito Yoshikawa
  • Publication number: 20130059124
    Abstract: An R-cut substrate is prepared by cutting lumbered synthetic quartz crystal along a surface parallel to the R-face. The surface of the thus obtained R-cut substrate has a structure in which the R-face smoothest in terms of the crystal structure accounts for the most part of the surface, and the m- and r-faces are exposed on this surface to extend in a direction parallel to the X-axis albeit only slightly upon processing. After catalytic metals are arranged on the surface of the R-cut substrate, a carbon source gas is supplied onto the surface of the R-cut substrate to grow carbon nanotubes in accordance with the crystal lattice structure using the crystal metals as nuclei. This makes it possible to manufacture carbon nanotubes with a good orientation and linearity.
    Type: Application
    Filed: March 1, 2011
    Publication date: March 7, 2013
    Inventors: Shigeo Maruyama, Shohei Chiashi, Hiroto Okabe, Masami Terasawa, Shuichi Kono, Tadashi Sato
  • Publication number: 20120148839
    Abstract: An atmosphere of a carbon source comprising an oxygenic compound is brought into contact with a catalyst with heating to yield single-walled carbon nanotubes. The carbon source comprising an oxygenic compound preferably is an alcohol and/or ether. The catalyst preferably is a metal. The heating temperature is preferably 500 to 1,500° C. The single-walled carbon nanotubes thus obtained contain no foreign substances and have satisfactory quality with few defects.
    Type: Application
    Filed: February 17, 2012
    Publication date: June 14, 2012
    Inventors: Shigeo MARUYAMA, Masahito Yoshikawa
  • Patent number: 8128900
    Abstract: An atmosphere of a carbon source comprising an oxygenic compound is brought into contact with a catalyst with heating to yield single-walled carbon nanotubes. The carbon source comprising an oxygenic compound preferably is an alcohol and/or ether. The catalyst preferably is a metal. The heating temperature is preferably 500 to 1,500° C. The single-walled carbon nanotubes thus yield contain no foreign substances and have satisfactory quality with few defects.
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: March 6, 2012
    Assignees: Toudai TLO, Ltd., Toray Industries, Inc.
    Inventors: Shigeo Maruyama, Masahito Yoshikawa