Patents by Inventor Shigeru Shirayone

Shigeru Shirayone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12191121
    Abstract: Provided is a plasma processing apparatus capable of obtaining desired etch profiles and preventing the degradation of yield rates due to the adhesion of particles, and equipped with a processing chamber in which a sample is plasma-treated; a radio-frequency power source for supplying radio-frequency power used to generate plasma; a sample stage which is provided with electrodes for electrostatically adsorbing the sample and on which the sample is mounted; and a DC power supply for applying DC voltages to the electrodes, the apparatus being further equipped with a control apparatus for controlling the DC power supply so as to apply such DC voltages as to decrease the absolute value of the potential of the sample in the absence of the plasma.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: January 7, 2025
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Kazuyuki Ikenaga, Masaki Ishiguro, Masahiro Sumiya, Shigeru Shirayone
  • Patent number: 12112925
    Abstract: A plasma processing apparatus includes: a plasma processing chamber; a radio frequency power source; a sample stage on which a sample is mounted; an electrode which is arranged inside the sample stage and electrostatically chucks the sample; a DC power source which applies a DC voltage to the electrode; and a control device which controls an output voltage of the DC power source so that an electric potential difference between an electric potential of the sample and an electric potential of an inner wall of the plasma processing chamber is reduced to an electric potential difference within a predetermined range during interruption of plasma discharge.
    Type: Grant
    Filed: January 12, 2022
    Date of Patent: October 8, 2024
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Masaki Ishiguro, Masahiro Sumiya, Shigeru Shirayone, Kazuyuki Ikenaga, Tomoyuki Tamura
  • Patent number: 11664233
    Abstract: A sample releasing method for releasing a sample subjected to plasma processing from a sample stage on which the sample is electrostatically attracted by applying DC voltage to an electrostatic chuck electrode, and the method includes: moving the sample subjected to the plasma processing upward above the sample stage; and after moving the sample, controlling the DC voltage such that an electric potential of the sample is to be smaller.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: May 30, 2023
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Masaki Ishiguro, Masahiro Sumiya, Shigeru Shirayone, Tomoyuki Tamura, Kazuyuki Ikenaga
  • Publication number: 20220359172
    Abstract: Provided is a plasma processing apparatus capable of obtaining desired etch profiles and preventing the degradation of yield rates due to the adhesion of particles, and equipped with a processing chamber in which a sample is plasma-treated; a radio-frequency power source for supplying radio-frequency power used to generate plasma; a sample stage which is provided with electrodes for electrostatically adsorbing the sample and on which the sample is mounted; and a DC power supply for applying DC voltages to the electrodes, the apparatus being further equipped with a control apparatus for controlling the DC power supply so as to apply such DC voltages as to decrease the absolute value of the potential of the sample in the absence of the plasma.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 10, 2022
    Inventors: Kazuyuki Ikenaga, Masaki Ishiguro, Masahiro Sumiya, Shigeru Shirayone
  • Patent number: 11424108
    Abstract: Provided is a plasma processing apparatus capable of obtaining desired etch profiles and preventing the degradation of yield rates due to the adhesion of particles, and equipped with a processing chamber in which a sample is plasma-treated; a radio-frequency power source for supplying radio-frequency power used to generate plasma; a sample stage which is provided with electrodes for electrostatically adsorbing the sample and on which the sample is mounted; and a DC power supply for applying DC voltages to the electrodes, the apparatus being further equipped with a control apparatus for controlling the DC power supply so as to apply such DC voltages as to decrease the absolute value of the potential of the sample in the absence of the plasma.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: August 23, 2022
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Kazuyuki Ikenaga, Masaki Ishiguro, Masahiro Sumiya, Shigeru Shirayone
  • Publication number: 20220139678
    Abstract: A plasma processing apparatus includes: a plasma processing chamber; a radio frequency power source; a sample stage on which a sample is mounted; an electrode which is arranged inside the sample stage and electrostatically chucks the sample; a DC power source which applies a DC voltage to the electrode; and a control device which controls an output voltage of the DC power source so that an electric potential difference between an electric potential of the sample and an electric potential of an inner wall of the plasma processing chamber is reduced to an electric potential difference within a predetermined range during interruption of plasma discharge.
    Type: Application
    Filed: January 12, 2022
    Publication date: May 5, 2022
    Inventors: Masaki Ishiguro, Masahiro Sumiya, Shigeru Shirayone, Kazuyuki Ikenaga, Tomoyuki Tamura
  • Patent number: 11315792
    Abstract: A plasma processing apparatus includes a plasma processing chamber processing a sample using plasma, a radio frequency power supply supplying radio frequency power for generating the plasma, a sample stage including an electrode electrostatically chucking the sample, mounting the sample thereon, a DC power supply applying DC voltage to the electrode, and a control device shifting the DC voltage previously set, in a negative direction by a first shift amount during discharge of the plasma, shifting the DC voltage having been shifted in the negative direction by the first shift amount, in a positive direction by a second shift amount after the discharge of the plasma. The first shift amount has a value changing potential over a surface of the sample to 0 V, upon shifting the DC voltage in the positive direction. The second shift amount has a value obtained based on a floating potential of the plasma.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: April 26, 2022
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Masaki Ishiguro, Masahiro Sumiya, Shigeru Shirayone, Kazuyuki Ikenaga, Tomoyuki Tamura
  • Patent number: 11257661
    Abstract: A plasma processing apparatus includes: a plasma processing chamber; a radio frequency power source; a sample stage on which a sample is mounted; an electrode which is arranged inside the sample stage and electrostatically chucks the sample; a DC power source which applies a DC voltage to the electrode; and a control device which controls an output voltage of the DC power source so that an electric potential difference between an electric potential of the sample and an electric potential of an inner wall of the plasma processing chamber is reduced to an electric potential difference within a predetermined range during interruption of plasma discharge.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: February 22, 2022
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Masaki Ishiguro, Masahiro Sumiya, Shigeru Shirayone, Kazuyuki Ikenaga, Tomoyuki Tamura
  • Patent number: 11107694
    Abstract: A sample releasing method for releasing a sample subjected to plasma processing from a sample stage on which the sample is electrostatically attracted by applying DC voltage to an electrostatic chuck electrode, and the method includes: moving the sample subjected to the plasma processing upward above the sample stage; and after moving the sample, controlling the DC voltage such that an electric potential of the sample is to be smaller.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: August 31, 2021
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Masaki Ishiguro, Masahiro Sumiya, Shigeru Shirayone, Tomoyuki Tamura, Kazuyuki Ikenaga
  • Patent number: 10490412
    Abstract: A sample releasing method for releasing a sample subjected to plasma processing from a sample stage on which the sample is electrostatically attracted by applying DC voltage to an electrostatic chuck electrode, and the method includes: moving the sample subjected to the plasma processing upward above the sample stage; and after moving the sample, controlling the DC voltage such that an electric potential of the sample is to be smaller.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: November 26, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Masaki Ishiguro, Masahiro Sumiya, Shigeru Shirayone, Tomoyuki Tamura, Kazuyuki Ikenaga
  • Patent number: 10395935
    Abstract: A plasma processing apparatus includes a plasma processing chamber processing a sample using plasma, a radio frequency power supply supplying radio frequency power for generating the plasma, a sample stage including an electrode electrostatically chucking the sample, mounting the sample thereon, a DC power supply applying DC voltage to the electrode, and a control device shifting the DC voltage previously set, in a negative direction by a first shift amount during discharge of the plasma, shifting the DC voltage having been shifted in the negative direction by the first shift amount, in a positive direction by a second shift amount after the discharge of the plasma. The first shift amount has a value changing potential over a surface of the sample to 0 V, upon shifting the DC voltage in the positive direction. The second shift amount has a value obtained based on a floating potential of the plasma.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: August 27, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Masaki Ishiguro, Masahiro Sumiya, Shigeru Shirayone, Kazuyuki Ikenaga, Tomoyuki Tamura
  • Patent number: 9941133
    Abstract: A plasma processing apparatus includes a plasma processing chamber processing a sample using plasma, a radio frequency power supply supplying radio frequency power for generating the plasma, a sample stage including an electrode electrostatically chucking the sample, mounting the sample thereon, a DC power supply applying DC voltage to the electrode, and a control device shifting the DC voltage previously set, in a negative direction by a first shift amount during discharge of the plasma, shifting the DC voltage having been shifted in the negative direction by the first shift amount, in a positive direction by a second shift amount after the discharge of the plasma. The first shift amount has a value changing potential over a surface of the sample to 0 V, upon shifting the DC voltage in the positive direction. The second shift amount has a value obtained based on a floating potential of the plasma.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: April 10, 2018
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Masaki Ishiguro, Masahiro Sumiya, Shigeru Shirayone, Kazuyuki Ikenaga, Tomoyuki Tamura
  • Patent number: 9607874
    Abstract: A plasma processing apparatus includes a stage in a processing chamber where plasma is formed, a wafer to be processed, and an electrode arranged at an upper part of the stage and supplied with power to electrostatically attract and hold the wafer on the stage, and consecutively processing a plurality of wafers one by one. There are plural processing steps of conducting processing using the plasma under different conditions and there are plural periods when formation of plasma is stopped between the processing steps. An inner wall of the processing chamber is coated before starting the processing of any wafer, and voltage supplied to the electrode is changed according to a balance of respective polarities of particles floating and charged in the processing chamber in each period when formation of plasma is stopped.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: March 28, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroyuki Kobayashi, Tomoyuki Tamura, Masaki Ishiguro, Shigeru Shirayone, Kazuyuki Ikenaga, Makoto Nawata
  • Patent number: 7947189
    Abstract: A vacuum processing method includes mounting a sample to be processed on a sample mounting surface on a sample holder placed in a vacuum container whose inside can be depressurized, feeding a processing gas and electric field to a space above the sample holder inside of the vacuum container to generate plasma, and etching films of a plurality of layers laid over the surface of the sample into a predetermined shape. A heat conducting gas is fed between the sample mounting surface and the backside of the sample, and at the same time, the pressure of the heat conducting gas is changed stepwise in accordance with the progress of the processing of the films of a plurality of layers of the sample.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: May 24, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Tooru Aramaki, Tsunehiko Tsubone, Tadamitsu Kanekiyo, Shigeru Shirayone, Hideki Kihara
  • Publication number: 20090000741
    Abstract: A vacuum processing apparatus includes a vacuum container which can be depressurized, a sample holder inside of the vacuum container for mounting a sample to be processed, wherein films laid over a surface of the sample are etched with plasma generated in a space above the sample holder. The apparatus further includes a gas supply channel for feeding a heat conducting gas between a sample mounting surface and the backside of the sample, and a pressure control unit for changing stepwise the pressure of the gas supply channel between the sample mounting surface and the backside of the sample in accordance with the progress of the processing of the films of the sample by the etching.
    Type: Application
    Filed: August 29, 2008
    Publication date: January 1, 2009
    Inventors: Tooru Aramaki, Tsunehiko Tsubone, Tadamitsu Kanekiyo, Shigeru Shirayone, Hideki Kihara
  • Publication number: 20070170149
    Abstract: A vacuum processing method includes mounting a sample to be processed on a sample mounting surface on a sample holder placed in a vacuum container whose inside can be depressurized, feeding a processing gas and electric field to a space above the sample holder inside of the vacuum container to generate plasma, and etching films of a plurality of layers laid over the surface of the sample into a predetermined shape. A heat conducting gas is fed between the sample mounting surface and the backside of the sample, and at the same time, the pressure of the heat conducting gas is changed stepwise in accordance with the progress of the processing of the films of a plurality of layers of the sample.
    Type: Application
    Filed: April 5, 2007
    Publication date: July 26, 2007
    Inventors: Tooru Aramaki, Tsunehiko Tsubone, Tadamitsu Kanekiyo, Shigeru Shirayone, Hideki Kihara
  • Publication number: 20060237391
    Abstract: Provided is a vacuum processing apparatus or processing method which, when films of a plurality of layers are etched into a predetermined shape, eliminates a deficiency in shape formed by sample processing, increases the aspect ratio of the processed shape, and provides a more precise shape.
    Type: Application
    Filed: August 30, 2005
    Publication date: October 26, 2006
    Inventors: Tooru Aramaki, Tsunehiko Tsubone, Tadamitsu Kanekiyo, Shigeru Shirayone, Hideki Kihara
  • Publication number: 20050072444
    Abstract: A method for processing a plasma processing apparatus having plasma generating means 3, 8, 10, 13 through 15 for generating plasma within a processing chamber, a high-frequency power applying means 18 for applying high-frequency power to an object 17 to be processed, a processing chamber 1 to which an evacuating device 7 is connected and capable of having its interior evacuated, and a gas supply device (not shown) for the processing chamber, wherein the method comprises mounting a Si wafer 17 on an electrode 4 for holding the object to be processed, introducing hydrobromic gas and chlorine gas into the processing chamber and generating plasma, and removing the aluminum-based deposit adhered to the interior of the processing chamber.
    Type: Application
    Filed: March 4, 2004
    Publication date: April 7, 2005
    Inventors: Shigeru Shirayone, Tetsuo Ono, Naoshi Itabashi, Motohiko Yoshigai, Takahiro Abe, Takahiro Shimomura, Hiroyuki Kitsunai
  • Patent number: 6503364
    Abstract: In the plasma processing apparatus for generating plasma in a processing chamber and processing a wafer by mutual action of electromagnetic waves radiated from a UHF band antenna installed in the processing chamber and a magnetic field formed by a magnetic field generator installed around the processing chamber, a hollow tube having one end in communication with an opening in the side wall of the processing chamber and another end, outside the processing chamber, which has a measuring window of plasma optical emission. By setting the lines of force of the magnetic field formed by the magnetic field generator so as to form an angle relative to the hollow tube, entry of plasma into the hollow tube can be prevented, and adhesion of deposits onto the measuring window can be suppressed, whereby the transmission factor of the measuring window can be kept constant over a long period of use.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: January 7, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Toshio Masuda, Tatehito Usui, Shigeru Shirayone, Kazue Takahashi, Mitsuru Suehiro
  • Patent number: 6245190
    Abstract: A plasma processing apparatus and a method therefor which can achieve a preferred process rate, a fine pattern process capability, a selectivity and uniformity of processing at the same time compatibly for a large size wafer, which effects are achieved by controlling the plasma state and the dissociation state of etching gas through control of the electron resonance through application of a magnetic field thereto. A high frequency power at 20-300 MHz is applied across a pair of electrodes in a vacuum process chamber, and a magnetic field is formed parallel to the plane of the electrodes in the space between the electrodes. By controlling the intensity of the magnetic field in a range of 100 gauss or smaller, formation of electron cyclotron resonance and electron sheath resonance occurring from interaction between the electrical field and the magnetic field in the electrode sheath portion is controlled. Thereby, the plasma state, i.e.
    Type: Grant
    Filed: March 26, 1998
    Date of Patent: June 12, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Toshio Masuda, Katsuhiko Mitani, Tetsunori Kaji, Jun'ichi Tanaka, Katsuya Watanabe, Shigeru Shirayone, Toru Otsubo, Ichiro Sasaki, Hideshi Fukumoto, Makoto Koizumi