Patents by Inventor Shigeru Takaki

Shigeru Takaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8177922
    Abstract: An R—Fe—B based anisotropic sintered magnet according to the present invention has, as a main phase, an R2Fe14B type compound that includes a light rare-earth element RL (which is at least one of Nd and Pr) as a major rare-earth element R, and also has a heavy rare-earth element RH (which is at least one element selected from the group consisting of Dy and Tb). In the crystal lattice of the main phase, the c-axis is oriented in a predetermined direction. The magnet includes a portion in which at least two peaks of diffraction are observed within a 2? range of 60.5 degrees to 61.5 degrees when an X-ray diffraction measurement is carried out using a CuK ? ray on a plane that is located at a depth of 500 ?m or less under a pole face of the magnet and that is parallel to the pole face.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: May 15, 2012
    Assignee: Hitachi Metals, Ltd.
    Inventors: Tomoori Odaka, Hideyuki Morimoto, Kohshi Yoshimura, Shigeru Takaki
  • Patent number: 8177921
    Abstract: An R—Fe—B based rare-earth sintered magnet according to the present invention includes, as a main phase, crystal grains of an R2Fe14B type compound that includes Nd, which is a light rare-earth element, as a major rare-earth element R. The magnet includes a heavy rare-earth element RH (which is at least one of Dy and Tb) that has been introduced through the surface of the sintered magnet by diffusion. The magnet has a region in which the concentration of the heavy rare-earth element RH in a grain boundary R-rich phase is lower than at the surface of the crystal grains of the R2Fe14B type compound but higher than at the core of the crystal grains of the R2Fe14B type compound.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: May 15, 2012
    Assignee: Hitachi Metals, Ltd.
    Inventors: Tomoori Odaka, Hideyuki Morimoto, Kohshi Yoshimura, Shigeru Takaki, Shinichiro Sakashita
  • Publication number: 20110205006
    Abstract: An R—Fe—B based anisotropic sintered magnet according to the present invention has, as a main phase, an R2Fe14B type compound that includes a light rare-earth element RL (which is at least one of Nd and Pr) as a major rare-earth element R, and also has a heavy rare-earth element RH (which is at least one element selected from the group consisting of Dy and Tb). In the crystal lattice of the main phase, the c-axis is oriented in a predetermined direction. The magnet includes a portion in which at least two peaks of diffraction are observed within a 2? range of 60.5 degrees to 61.5 degrees when an X-ray diffraction measurement is carried out using a CuK ? ray on a plane that is located at a depth of 500 ?m or less under a pole face of the magnet and that is parallel to the pole face.
    Type: Application
    Filed: September 2, 2008
    Publication date: August 25, 2011
    Applicant: HITACHI METALS, LTD.
    Inventors: Tomoori Odaka, Hideyuki Morimoto, Kohshi Yoshimura, Shigeru Takaki
  • Publication number: 20110012699
    Abstract: An R—Fe—B based rare-earth sintered magnet according to the present invention includes, as a main phase, crystal grains of an R2Fe14B type compound that includes Nd, which is a light rare-earth element, as a major rare-earth element R. The magnet includes a heavy rare-earth element RH (which is at least one of Dy and Tb) that has been introduced through the surface of the sintered magnet by diffusion. The magnet has a region in which the concentration of the heavy rare-earth element RH in a grain boundary R-rich phase is lower than at the surface of the crystal grains of the R2Fe14B type compound but higher than at the core of the crystal grains of the R2Fe14B type compound.
    Type: Application
    Filed: July 25, 2008
    Publication date: January 20, 2011
    Applicant: HITACHI METALS, LTD.
    Inventors: Tomoori Odaka, Hideyuki Morimoto, Kohshi Yoshimura, Shigeru Takaki, Shinichiro Sakashita
  • Patent number: 6752879
    Abstract: A compact is produced from an alloy powder for R—Fe—B type rare earth magnets including particles having a size in a range of about 2.0 &mgr;m to about 5.0 &mgr;m as measured by a light scattering method using a Fraunhofer forward scattering in a proportion of approximately 45 vol. % or more and particles having a size larger than about 10 &mgr;m in a proportion of less than about 1 vol. %. The compact is then sintered to obtain a R—Fe—B type rare earth magnet having an average crystal grain size in a range of about 5 &mgr;m to about 7.5 &mgr;m, and an oxygen concentration in a range of about 2.2 at. % to about 3.0 at. %.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: June 22, 2004
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Shigeru Takaki, Ken Makita
  • Patent number: 6648984
    Abstract: A compact is produced from an alloy powder for R—Fe—B type rare earth magnets including particles having a size in a range of about 2.0 &mgr;m to about 5.0 &mgr;m as measured by a light scattering method using a Fraunhofer forward scattering in a proportion of approximately 45 vol. % or more and particles having a size larger than about 10 &mgr;m in a proportion of less than about 1 vol. %. The compact is then sintered to obtain a R—Fe—B type rare earth magnet having an average crystal grain size in a range of about 5 &mgr;m to about 7.5 &mgr;m, and an oxygen concentration in a range of about 2.2 at. % to about 3.0 at. %.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: November 18, 2003
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Shigeru Takaki, Ken Makita
  • Publication number: 20030205294
    Abstract: A compact is produced from an alloy powder for R—Fe—B type rare earth magnets including particles having a size in a range of about 2.0 &mgr;m to about 5.0 &mgr;m as measured by a light scattering method using a Fraunhofer forward scattering in a proportion of approximately 45 vol. % or more and particles having a size larger than about 10 &mgr;m in a proportion of less than about 1 vol. %. The compact is then sintered to obtain a R—Fe—B type rare earth magnet having an average crystal grain size in a range of about 5 &mgr;m to about 7.5 &mgr;m, and an oxygen concentration in a range of about 2.2 at. % to about 3.0 at. %.
    Type: Application
    Filed: May 29, 2003
    Publication date: November 6, 2003
    Applicant: Sumitomo Special Metals Co., Ltd.
    Inventors: Shigeru Takaki, Ken Makita
  • Publication number: 20020117237
    Abstract: A compact is produced from an alloy powder for R—Fe—B type rare earth magnets including particles having a size in a range of about 2.0 &mgr;m to about 5.0 &mgr;m as measured by a light scattering method using a Fraunhofer forward scattering in a proportion of approximately 45 vol. % or more and particles having a size larger than about 10 &mgr;m in a proportion of less than about 1 vol. %. The compact is then sintered to obtain a R—Fe—B type rare earth magnet having an average crystal grain size in a range of about 5 &mgr;m to about 7.5 &mgr;m, and an oxygen concentration in a range of about 2.2 at. % to about 3.0 at. %.
    Type: Application
    Filed: September 24, 2001
    Publication date: August 29, 2002
    Applicant: Sumitomo Special Metals Co., Ltd.
    Inventors: Shigeru Takaki, Ken Makita