Patents by Inventor Shigetaka Tomiya

Shigetaka Tomiya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10868342
    Abstract: A charge and discharge control device is provide. The charge and discharge control device includes a determination circuitry configured to determine an ion diffusion rate associated with electric conduction in a secondary battery, and determine a time integrated value of an overcharged amount of an active material based on the ion diffusion rate and a charge condition; an evaluation circuitry configured to evaluate the charge condition of the secondary battery based on a determination result obtained by the determination circuitry; and a charge and discharge controller configured to control state of current application and voltage application to the secondary battery at a time of charging or discharging the secondary battery based on an evaluation result obtained by the evaluation circuitry.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: December 15, 2020
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Masatomo Tanaka, Naoki Koshitani, Yuto Horiuchi, Kazuhiko Morizawa, Shigetaka Tomiya
  • Patent number: 10411307
    Abstract: Provided is a technology that can improve a cycle property without lowering a volume energy density. The present technology provides a method for evaluating a secondary battery, including conducting at least: a determination step of determining a degree of diffusion defect of an ion that performs electric conduction; an evaluation step of evaluating a state of the secondary battery on the basis the result of the determination in the determination step; and a control step of controlling states of current application and voltage application on the secondary battery during charging or during discharging of the secondary battery on the basis of the result of the evaluation in the evaluation step.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: September 10, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Masatomo Tanaka, Yoshifumi Shimizu, Yuto Horiuchi, Shigetaka Tomiya
  • Publication number: 20190054837
    Abstract: A charge and discharge control device is provide. The charge and discharge control device includes a determination circuitry configured to determine an ion diffusion rate associated with electric conduction in a secondary battery, and determine a time integrated value of an overcharged amount of an active material based on the ion diffusion rate and a charge condition; an evaluation circuitry configured to evaluate the charge condition of the secondary battery based on a determination result obtained by the determination circuitry, and a charge and discharge controller configured to control state of current application and voltage application to the secondary battery at a time of charging or discharging the secondary battery based on an evaluation result obtained by the evaluation circuitry.
    Type: Application
    Filed: October 22, 2018
    Publication date: February 21, 2019
    Inventors: Masatomo TANAKA, Naoki KOSHITANI, Yuto HORIUCHI, Kazuhiko MORIZAWA, Shigetaka TOMIYA
  • Publication number: 20180269540
    Abstract: Provided is a technology that can improve a cycle property without lowering a volume energy density. The present technology provides a method for evaluating a secondary battery, including conducting at least: a determination step of determining a degree of diffusion defect of an ion that performs electric conduction; an evaluation step of evaluating a state of the secondary battery on the basis the result of the determination in the determination step; and a control step of controlling states of current application and voltage application on the secondary battery during charging or during discharging of the secondary battery on the basis of the result of the evaluation in the evaluation step.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 20, 2018
    Inventors: MASATOMO TANAKA, YOSHIFUMI SHIMIZU, YUTO HORIUCHI, SHIGETAKA TOMIYA
  • Patent number: 9911894
    Abstract: A method for manufacturing a light-emitting diode, which includes the steps of: providing a substrate having a plurality of protruded portions on one main surface thereof wherein the protruded portion is made of a material different in type from that of the substrate and growing a first nitride-based III-V Group compound semiconductor layer on each recess portion of the substrate through a state of making a triangle in section wherein a bottom surface of the recess portion becomes a base of the triangle; laterally growing a second nitride-based III-V Group compound semiconductor layer on the substrate from the first nitride-based III-V Group compound semiconductor layer; and successively growing, on the second nitride-based III-V Group compound semiconductor layer, a third nitride-based III-V Group compound semiconductor layer of a first conduction type, an active layer, and a fourth nitride-based III-V compound semiconductor layer of a second conduction type.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: March 6, 2018
    Assignee: SONY CORPORATION
    Inventors: Akira Ohmae, Michinori Shiomi, Noriyuki Futagawa, Takaaki Ami, Takao Miyajima, Yuuji Hiramatsu, Izuho Hatada, Nobukata Okano, Shigetaka Tomiya, Katsunori Yanashima, Tomonori Hino, Hironobu Narui
  • Patent number: 9871349
    Abstract: There is provided a light-emitting element including a laminated structure including a first compound semiconductor layer having a first conductivity type, a second compound semiconductor layer having a second conductivity type different than the first conductivity type, and a third compound semiconductor layer formed between the first and second compound semiconductor layers and including an active layer. A second end surface of the second compound semiconductor layer and a third end surface of the third compound semiconductor layer are formed at respective second and third angles theta2 and theta3 relative to a virtual vertical direction of the laminated structure and satisfy the following relationship: “absolute value of theta3 is equal to or greater than 0 degree and smaller than absolute value of theta2”.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: January 16, 2018
    Assignee: SONY CORPORATION
    Inventors: Kunihiko Tasai, Eiji Nakayama, Yuusuke Nakayama, Shigetaka Tomiya
  • Publication number: 20160268776
    Abstract: There is provided a light-emitting element including a laminated structure including a first compound semiconductor layer having a first conductivity type, a second compound semiconductor layer having a second conductivity type different than the first conductivity type, and a third compound semiconductor layer formed between the first and second compound semiconductor layers and including an active layer. A second end surface of the second compound semiconductor layer and a third end surface of the third compound semiconductor layer are formed at respective second and third angles theta2 and theta3 relative to a virtual vertical direction of the laminated structure and satisfy the following relationship: “absolute value of theta3 is equal to or greater than 0 degree and smaller than absolute value of theta2”.
    Type: Application
    Filed: November 10, 2014
    Publication date: September 15, 2016
    Inventors: KUNIHIKO TASAI, EIJI NAKAYAMA, YUUSUKE NAKAYAMA, SHIGETAKA TOMIYA
  • Publication number: 20150228846
    Abstract: A method for manufacturing a light-emitting diode, which includes the steps of: providing a substrate having a plurality of protruded portions on one main surface thereof wherein the protruded portion is made of a material different in type from that of the substrate and growing a first nitride-based III-V Group compound semiconductor layer on each recess portion of the substrate through a state of making a triangle in section wherein a bottom surface of the recess portion becomes a base of the triangle; laterally growing a second nitride-based III-V Group compound semiconductor layer on the substrate from the first nitride-based III-V Group compound semiconductor layer; and successively growing, on the second nitride-based III-V Group compound semiconductor layer, a third nitride-based III-V Group compound semiconductor layer of a first conduction type, an active layer, and a fourth nitride-based III-V compound semiconductor layer of a second conduction type.
    Type: Application
    Filed: April 17, 2015
    Publication date: August 13, 2015
    Inventors: Akira Ohmae, Michinori Shiomi, Noriyuki Futagawa, Takaaki Ami, Takao Miyajima, Yuuji Hiramatsu, Izuho Hatada, Nobukata Okano, Shigetaka Tomiya, Katsunori Yanashima, Tomonori Hino, Hironobu Narui
  • Patent number: 9034738
    Abstract: A method for manufacturing a light-emitting diode, which includes the steps of: providing a substrate having a plurality of protruded portions on one main surface thereof wherein the protruded portion is made of a material different in type from that of the substrate and growing a first nitride-based III-V Group compound semiconductor layer on each recess portion of the substrate through a state of making a triangle in section wherein a bottom surface of the recess portion becomes a base of the triangle; laterally growing a second nitride-based III-V Group compound semiconductor layer on the substrate from the first nitride-based III-V Group compound semiconductor layer; and successively growing, on the second nitride-based III-V Group compound semiconductor layer, a third nitride-based III-V Group compound semiconductor layer of a first conduction type, an active layer, and a fourth nitride-based III-V compound semiconductor layer of a second conduction type.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: May 19, 2015
    Assignee: SONY CORPORATION
    Inventors: Akira Ohmae, Michinori Shiomi, Noriyuki Futagawa, Takaaki Ami, Takao Miyajima, Yuuji Hiramatsu, Izuho Hatada, Nobukata Okano, Shigetaka Tomiya, Katsunori Yanashima, Tomonori Hino, Hironobu Narui
  • Patent number: 8859401
    Abstract: A method for manufacturing a light-emitting diode, which includes the steps of: providing a substrate having a plurality of protruded portions on one main surface thereof wherein the protruded portion is made of a material different in type from that of the substrate and growing a first nitride-based III-V Group compound semiconductor layer on each recess portion of the substrate through a state of making a triangle in section wherein a bottom surface of the recess portion becomes a base of the triangle; laterally growing a second nitride-based III-V Group compound semiconductor layer on the substrate from the first nitride-based III-V Group compound semiconductor layer; and successively growing, on the second nitride-based III-V Group compound semiconductor layer, a third nitride-based III-V Group compound semiconductor layer of a first conduction type, an active layer, and a fourth nitride-based III-V compound semiconductor layer of a second conduction type.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: October 14, 2014
    Assignee: Sony Corporation
    Inventors: Akira Ohmae, Michinori Shiomi, Noriyuki Futagawa, Takaaki Ami, Takao Miyajima, Yuuji Hiramatsu, Izuho Hatada, Nobutaka Okano, Shigetaka Tomiya, Katsunori Yanashima, Tomonori Hino, Hironobu Narui
  • Publication number: 20130143357
    Abstract: There is provided a method of forming an organic thin film, capable of forming a single-crystal organic thin film easily and rapidly while controlling a thickness and a size. After an organic solution is supplied to one surface (a solution accumulating region wide in width, and a solution constricting region narrow in width and connected thereto) of a film-formation substrate supported by a support controllable in temperature, a movable body controllable in temperature independently of the support is moved along a surface of the support while being kept in contact with the organic solution. The temperature of the support is set at a temperature positioned between a solubility curve and a super-solubility curve concerning the organic solution, and the temperature of the movable body is set at a temperature positioned on a side higher in temperature than the solubility curve.
    Type: Application
    Filed: August 10, 2011
    Publication date: June 6, 2013
    Applicant: SONY CORPORATION
    Inventors: Osamu Goto, Daisuke Hobara, Akihiro Nomoto, Yosuke Murakami, Shigetaka Tomiya, Norihito Kobayashi, Keisuke Shimizu, Mao Katsuhara, Takahiro Ohe, Noriyuki Kawashima, Yuka Takahashi, Toshio Fukuda, Yui Ishii
  • Patent number: 8361924
    Abstract: Disclosed herein is fine particles of core-shell structure, each particle being composed of a core particle which is formed from a first material and has the face-centered cubic crystal structure and a shell layer which is formed from a second material differing from the first material on the surface of the core particle and has the face-centered cubic crystal structure, the fine particles containing particles which are multiply twinned fine particles and are surrounded by the {111} crystal plane.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: January 29, 2013
    Assignee: Sony Corporation
    Inventors: Shinji Tanaka, Shuji Goto, Shigetaka Tomiya
  • Publication number: 20130022070
    Abstract: The present invention relates to a semiconductor laser device capable of reliably suppressing degradation of an end face due to interface oxidation and distortion application, and to a manufacturing method of the same. The semiconductor laser device has a laser structure portion 107 having opposite resonator faces 108 and 109, and protecting films 110 and 120 formed on at least one of the opposite resonator end faces, wherein the protecting films 110 and 120 are formed of nitride dielectric films having a multistage structure including amorphous layers 111 and 121 and polycrystal layers 112 and 122 in crystal structure, respectively, from aside in contact with the resonator faces.
    Type: Application
    Filed: November 11, 2011
    Publication date: January 24, 2013
    Applicant: SONY CORPORATION
    Inventors: Takashi Tange, Shigetaka Tomiya
  • Publication number: 20120046164
    Abstract: Disclosed herein is fine particles of core-shell structure, each particle being composed of a core particle which is formed from a first material and has the face-centered cubic crystal structure and a shell layer which is formed from a second material differing from the first material on the surface of the core particle and has the face-centered cubic crystal structure, the fine particles containing particles which are multiply twinned fine particles and are surrounded by the {111} crystal plane.
    Type: Application
    Filed: August 2, 2011
    Publication date: February 23, 2012
    Applicant: SONY CORPORATION
    Inventors: Shinji Tanaka, Shuji Goto, Shigetaka Tomiya
  • Publication number: 20110212559
    Abstract: A method for manufacturing a light-emitting diode, which includes the steps of: providing a substrate having a plurality of protruded portions on one main surface thereof wherein the protruded portion is made of a material different in type from that of the substrate and growing a first nitride-based III-V Group compound semiconductor layer on each recess portion of the substrate through a state of making a triangle in section wherein a bottom surface of the recess portion becomes a base of the triangle; laterally growing a second nitride-based III-V Group compound semiconductor layer on the substrate from the first nitride-based III-V Group compound semiconductor layer; and successively growing, on the second nitride-based III-V Group compound semiconductor layer, a third nitride-based III-V Group compound semiconductor layer of a first conduction type, an active layer, and a fourth nitride-based III-V compound semiconductor layer of a second conduction type.
    Type: Application
    Filed: May 6, 2011
    Publication date: September 1, 2011
    Applicant: SONY CORPORATION
    Inventors: Akira Ohmae, Michinori Shiomi, Noriyuki Futagawa, Takaaki Ami, Takao Miyajima, Yuuji Hiramatsu, Izuho Hatada, Nobutaka Okano, Shigetaka Tomiya, Katsunori Yanashima, Tomonori Hino, Hironobu Narui
  • Publication number: 20100308349
    Abstract: A light-emitting diode with (a) a substrate having at least one recessed portion on one main surface; (b) a sixth nitride-based III-V group compound semiconductor layer grown on the substrate without forming a space in the recessed portion; and (c) a third nitride-based III-V group compound semiconductor layer of a first conduction type, an active layer and a fourth nitride-based III-V group compound semiconductor layer of a second conduction type formed over the sixth nitride-based III-V group compound semiconductor layer, wherein, a dislocation occurring, in the sixth nitride-based III-V group compound semiconductor layer, from an interface with a bottom surface of the recessed portion in a direction vertical to the one main surface arrives at an inclined face or its vicinity of a triangle having the bottom surface of the recessed portion as a base and bends in a direction parallel to the one main surface.
    Type: Application
    Filed: June 9, 2010
    Publication date: December 9, 2010
    Applicant: Sony Corporation
    Inventors: Akira Ohmae, Shigetaka Tomiya, Yuki Maeda, Michinori Shiomi, Takaaki Ami, Takao Miyajima, Katsunori Yanashima, Takashi Tange, Atsushi Yasuda
  • Patent number: 7754504
    Abstract: A method for making a light-emitting diode, which including the steps of: providing a substrate having at least one recessed portion on one main surface and growing a first nitride-based III-V group compound semiconductor layer through a state of making a triangle in section having a bottom surface of the recessed portion as a base thereby burying the recessed portion; laterally growing a second nitride-based III-V group compound semiconductor layer from the first nitride-based III-V group compound semiconductor layer over the substrate; and successively growing a third nitride-based III-V group compound semiconductor layer of a first conduction type, an active layer and a fourth nitride-based III-V group compound semiconductor layer of a second conduction type on the second nitride-based III-V group compound semiconductor layer.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: July 13, 2010
    Assignee: Sony Corporation
    Inventors: Akira Ohmae, Shigetaka Tomiya, Yuki Maeda, Michinori Shiomi, Takaaki Ami, Takao Miyajima, Katsunori Yanashima, Takashi Tange, Atsushi Yasuda
  • Publication number: 20080217632
    Abstract: A GaN-based III-V group compound semiconductor light-emitting element having high light-emitting efficiency and high reliability at a light-emitting wavelength of 440 nm or more is provided. A GaN-based semiconductor laser element 10 has a laminated structure of: a stripe-shaped convex portion 18 made of a surface layer of a sapphire substrate 12, a buffer layer 14 and a first GaN layer 16, and on the sapphire substrate, a second GaN layer 20, an n-side cladding layer 22, an n-side guide layer 24, an active layer 26, a deterioration prevention layer 28, a p-side guide layer 30, a p-side cladding layer 32 and a p-side contact layer 34. The active layer is formed of a quantum well structure including a GaInN barrier layer 36 and a GaInN well layer 38, and a planar crystal defect prevention layer 40 made of an AlGaN layer is provided on the upper surface or lower surface, or between both the surfaces of the barrier layer and the well layer.
    Type: Application
    Filed: August 26, 2004
    Publication date: September 11, 2008
    Inventors: Shigetaka Tomiya, Osamu Goto
  • Publication number: 20070117357
    Abstract: When a semiconductor light emitting device or a semiconductor device is manufactured by growing nitride III-V compound semiconductor layers, which will form a light emitting device structure or a device structure, on a nitride III-V compound semiconductor substrate composed of a first region in form of a crystal having a first average dislocation density and a plurality of second regions having a second average dislocation density higher than the first average dislocation density and periodically aligned in the first region, device regions are defined on the nitride III-V compound semiconductor substrate such that the device regions do not substantially include second regions, emission regions or active regions of devices finally obtained do not include second regions.
    Type: Application
    Filed: January 23, 2007
    Publication date: May 24, 2007
    Inventors: Tsunenori Asatsuma, Shigetaka Tomiya, Koshi Tamamura, Tsuyoshi Tojo, Osamu Goto, Kensaku Motoki
  • Publication number: 20070085093
    Abstract: A method for manufacturing a light-emitting diode, which includes the steps of: providing a substrate having a plurality of protruded portions on one main surface thereof wherein the protruded portion is made of a material different in type from that of the substrate and growing a first nitride-based III-V Group compound semiconductor layer on each recess portion of the substrate through a state of making a triangle in section wherein a bottom surface of the recess portion becomes a base of the triangle; laterally growing a second nitride-based III-V Group compound semiconductor layer on the substrate from the first nitride-based III-V Group compound semiconductor layer; and successively growing, on the second nitride-based III-V Group compound semiconductor layer, a third nitride-based III-V Group compound semiconductor layer of a first conduction type, an active layer, and a fourth nitride-based III-V compound semiconductor layer of a second conduction type.
    Type: Application
    Filed: September 21, 2006
    Publication date: April 19, 2007
    Inventors: Akira Ohmae, Michinori Shiomi, Noriyuki Futagawa, Takaaki Ami, Takao Miyajima, Yuuji Hiramatsu, Izuho Hatada, Nobukata Okano, Shigetaka Tomiya, Katsunori Yanashima, Tomonori Hino, Hironobu Narui