Patents by Inventor Shigeto Sakashita

Shigeto Sakashita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11486531
    Abstract: Provided is a thermal-insulated multi-walled pipe for superconducting power transmission that highly prevents intrusion of external heat due to radiation and has excellent thermal insulation property without using a superinsulation. A thermal-insulated multi-walled pipe for superconducting power transmission comprises: a superconducting cable; and a multi-walled pipe that houses the superconducting cable, wherein the multi-walled pipe is composed of a plurality of straight pipes, and at least one of the plurality of straight pipes has, at a surface thereof, a zinc or zinc alloy-plated layer having an average spangle size of 2.0 mm or less.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: November 1, 2022
    Assignee: JFE STEEL CORPORATION
    Inventors: Yasuhide Ishiguro, Akio Sato, Shigeto Sakashita
  • Patent number: 11075508
    Abstract: A thermal-insulated multi-walled pipe for superconducting power transmission comprises: a superconducting cable; a multi-walled pipe composed of a plurality of straight pipes and houses the superconducting cable; and a plurality of spacers that are located between adjacent two straight pipes of the plurality of straight pipes, wherein a cross-sectional shape of each spacer is a polygon having three or more vertices, each spacer has a through-hole at a center in the plane, an inner straight pipe is located to pass through the through-hole, a frictional coefficient ?i between each spacer and the inner straight pipe is 0.1 or less, a frictional coefficient ?o between each spacer and an outer straight pipe is 0.1 or less, and a ratio Ld/d of a diagonal equivalent length Ld of the polygon to an inner diameter d of the outer straight pipe of the adjacent two straight pipes is 0.9 or less.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: July 27, 2021
    Assignee: JFE STEEL CORPORATION
    Inventors: Yasuhide Ishiguro, Akio Sato, Shigeto Sakashita
  • Patent number: 10971286
    Abstract: Provided is a thermal-insulated multi-walled pipe for superconducting power transmission that highly prevents intrusion of external heat due to radiation and has excellent thermal insulation property without using a superinsulation and can be produced easily. A thermal-insulated multi-walled pipe for superconducting power transmission comprises: a superconducting cable; and a multi-walled pipe that houses the superconducting cable, wherein the multi-walled pipe is composed of a plurality of straight pipes, and at least one of the plurality of straight pipes has, at a surface thereof, a coating layer containing a metal powder.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: April 6, 2021
    Assignee: JFE STEEL CORPORATION
    Inventors: Yasuhide Ishiguro, Akio Sato, Shigeto Sakashita
  • Publication number: 20200220340
    Abstract: A thermal-insulated multi-walled pipe for superconducting power transmission comprises: a superconducting cable; a multi-walled pipe composed of a plurality of straight pipes and houses the superconducting cable; and a plurality of spacers that are located between adjacent two straight pipes of the plurality of straight pipes, wherein a cross-sectional shape of each spacer is a polygon having three or more vertices, each spacer has a through-hole at a center in the plane, an inner straight pipe is located to pass through the through-hole, a frictional coefficient ?i between each spacer and the inner straight pipe is 0.1 or less, a frictional coefficient ?o between each spacer and an outer straight pipe is 0.1 or less, and a ratio Ld/d of a diagonal equivalent length Ld of the polygon to an inner diameter d of the outer straight pipe of the adjacent two straight pipes is 0.9 or less.
    Type: Application
    Filed: May 29, 2018
    Publication date: July 9, 2020
    Applicant: JFE STEEL CORPORATION
    Inventors: Yasuhide ISHIGURO, Akio SATO, Shigeto SAKASHITA
  • Publication number: 20200200316
    Abstract: Provided is a thermal-insulated multi-walled pipe for superconducting power transmission that highly prevents intrusion of external heat due to radiation and has excellent thermal insulation property without using a superinsulation. A thermal-insulated multi-walled pipe for superconducting power transmission comprises: a superconducting cable; and a multi-walled pipe that houses the superconducting cable, wherein the multi-walled pipe is composed of a plurality of straight pipes, and at least one of the plurality of straight pipes has, at a surface thereof, a zinc or zinc alloy-plated layer having an average spangle size of 2.0 mm or less.
    Type: Application
    Filed: May 29, 2018
    Publication date: June 25, 2020
    Applicant: JFE STEEL CORPORATION
    Inventors: Yasuhide ISHIGURO, Akio SATO, Shigeto SAKASHITA
  • Publication number: 20200203042
    Abstract: Provided is a thermal-insulated multi-walled pipe for superconducting power transmission that highly prevents intrusion of external heat due to radiation and has excellent thermal insulation property without using a superinsulation and can be produced easily. A thermal-insulated multi-walled pipe for superconducting power transmission comprises: a superconducting cable; and a multi-walled pipe that houses the superconducting cable, wherein the multi-walled pipe is composed of a plurality of straight pipes, and at least one of the plurality of straight pipes has, at a surface thereof, a coating layer containing a metal powder.
    Type: Application
    Filed: May 29, 2018
    Publication date: June 25, 2020
    Inventors: Yasuhide ISHIGURO, Akio SATO, Shigeto SAKASHITA
  • Patent number: 10436755
    Abstract: An ultrasonic flaw detection apparatus includes: a seam detection unit that captures a thermal image of a welded seam portion of an electric resistance welded pipe; an ultrasonic flaw detection sensor head that includes an ultrasonic probe that performs ultrasonic flaw detection on the welded seam portion; a seam position calculation unit that calculates a seam position and a bead cutting position of the electric resistance welded pipe; a bead cutting band detection unit that detects a bead cutting band of the electric resistance welded pipe; a bead cutting position calculation unit that calculates a bead cutting position of the electric resistance welded pipe; a tracking movement amount calculation unit that calculates a tracking movement amount of the ultrasonic flaw detection sensor head; and a sensor head driving unit that moves the ultrasonic flaw detection sensor head to track the welded seam portion according to the tracking movement amount.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: October 8, 2019
    Assignee: JFE Steel Corporation
    Inventors: Yutaka Matsui, Shigeto Sakashita, Atsushi Yonemoto
  • Patent number: 10002418
    Abstract: A laser beam welding diagnosis apparatus includes: an imaging unit configured to capture images of a laser beam welding penetration side of a laser beam welded portion at a predetermined time interval; a feature amount calculating unit configured to calculate, from an image captured by the imaging unit, a feature amount of a jetted portion accompanying laser beam welding penetration; a welding diagnosis unit configured to determine that a welding defect in the laser beam welded portion has occurred when values of the feature amounts of a predetermined area around the laser beam welded portion on the laser beam welding penetration side become equal to or less than a predetermined value for a predetermined duration or longer; and an output unit configured to output a welding quality state including the occurrence of the welding defect.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: June 19, 2018
    Assignee: JFE STEEL CORPORATION
    Inventors: Toshifumi Kodama, Shigeto Sakashita
  • Publication number: 20170205380
    Abstract: An ultrasonic flaw detection apparatus includes: a seam detection unit that captures a thermal image of a welded seam portion of an electric resistance welded pipe; an ultrasonic flaw detection sensor head that includes an ultrasonic probe that performs ultrasonic flaw detection on the welded seam portion; a seam position calculation unit that calculates a seam position and a bead cutting position of the electric resistance welded pipe; a bead cutting band detection unit that detects a bead cutting band of the electric resistance welded pipe; a bead cutting position calculation unit that calculates a bead cutting position of the electric resistance welded pipe; a tracking movement amount calculation unit that calculates a tracking movement amount of the ultrasonic flaw detection sensor head; and a sensor head driving unit that moves the ultrasonic flaw detection sensor head to track the welded seam portion according to the tracking movement amount.
    Type: Application
    Filed: July 1, 2015
    Publication date: July 20, 2017
    Inventors: Yutaka Matsui, Shigeto Sakashita, Atsushi Yonemoto
  • Publication number: 20160203596
    Abstract: A laser beam welding diagnosis apparatus includes: an imaging unit configured to capture images of a laser beam welding penetration side of a laser beam welded portion at a predetermined time interval; a feature amount calculating unit configured to calculate, from an image captured by the imaging unit, a feature amount of a jetted portion accompanying laser beam welding penetration; a welding diagnosis unit configured to determine that a welding defect in the laser beam welded portion has occurred when values of the feature amounts of a predetermined area around the laser beam welded portion on the laser beam welding penetration side become equal to or less than a predetermined value for a predetermined duration or longer; and an output unit configured to output a welding quality state including the occurrence of the welding defect.
    Type: Application
    Filed: August 29, 2014
    Publication date: July 14, 2016
    Applicant: JFE STEEL CORPORATION
    Inventors: Toshifumi KODAMA, Shigeto SAKASHITA
  • Patent number: 9109884
    Abstract: A method for manufacturing an electric resistance steel pipe having a good toughness at a welded portion is provided, the method being capable of stably manufacturing an electric resistance welded steel pipe having a desirable toughness at a welded portion although a steel strip serving as a base material has a dimensional variation. Groove shapes and are applied to edges and of an open pipe, an edge shape monitor continuously captures images of the edges and immediately before electric resistance welding, and the captured images are input to an arithmetic processing unit for image processing.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: August 18, 2015
    Assignee: JFE Steel Corporation
    Inventors: Tomohiro Inoue, Shigeto Sakashita, Daijiro Yuasa, Hiroyasu Yokoyama, Kazuhito Kenmochi, Yukinori Iizuka
  • Patent number: 8604382
    Abstract: There is provided a method for manufacturing a laser welded steel pipe in which the status of laser welding is accurately assessed, and the assessment is used to modify welding conditions, so that laser welded steel pipes can be manufactured at a high yield rate and in a stable manner. Irradiation point(s) of laser beam(s), with which the longitudinal edges are irradiated from the side of the outer surface, are monitored from the side of the inner surface of an open pipe, and then conditions of welding with the laser beam(s) are assessed to be kept unchanged if any keyhole is found penetrating out of the inner surface of the open pipe, or modified if no keyhole is found penetrating out of the inner surface of the open pipe.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: December 10, 2013
    Assignee: JFE Steel Corporation
    Inventors: Koji Yano, Kenji Oi, Masahito Suzuki, Toshifumi Kodama, Shigeto Sakashita
  • Patent number: 8578580
    Abstract: According to the present invention, penetrators can be adequately determined as flaws. In particular, a welded zone of a pipe is subjected to ultrasonic flaw detection at least in a pipe axial direction, and the quality of the pipe is evaluated using observed values in units of a predetermined area in a pipe thickness direction and the pipe axial direction. The length of one side of the predetermined area is an ultrasound beam width or more and a pipe thickness or less. The quality of the pipe can be evaluated while shifting the predetermined area in the pipe axial direction by using an average value of the observed values within the predetermined area. The length of one side of the predetermined area can be made an ultrasound beam width or more and a pipe thickness or less.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: November 12, 2013
    Assignee: JFE Steel Corporation
    Inventors: Yukinori Iizuka, Kazuhito Kenmochi, Hiroyasu Yokoyama, Tomohiro Inoue, Shigeto Sakashita
  • Patent number: 8393217
    Abstract: The present invention has a structure capable of detecting the scattered-type penetrator having oxides each with the size of several ?m sparsely and widely dispersed. Specifically, the structure includes a wave transmission unit 6 for transmitting an ultrasonic wave to the welded surface of the welded portion 2 in a pipe axial direction of the pipe 1 such that the beam width of a transmission beam 8 is brought into a range from 0.5 mm to 2.5 mm, and a wave reception unit 7 for receiving at least a portion of the reflection wave (reception beam 9) at the welded surface. The wave transmission unit 6 and the wave reception unit 7 include transmission/reception units formed of different groups of transducer elements on at least one or more array probes 5 arranged in the circumferential direction of the pipe.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: March 12, 2013
    Assignee: JFE Steel Corporation
    Inventors: Yukinori Iizuka, Kazuhito Kenmochi, Hiroyasu Yokoyama, Tomohiro Inoue, Shigeto Sakashita
  • Patent number: 8266964
    Abstract: An ultrasonic flaw detection is performed to a welded portion 2 of a pipe body 1, a defect detection threshold value is determined based on the signal intensity difference between the total area of the defects existing in the region of an ultrasonic beam on a welded surface and an artificial defect, and a quality control of the pipe body is performed based on the defect detection threshold value. An equivalent defect diameter is determined from the defect density on the welded surface of the welded portion of the pipe body in a pipe axis direction and the area of the ultrasonic beam on the welded surface based on the total area of the defects existing in the region of the ultrasonic beam, and the defect detection threshold value is determined based on the equivalent defect diameter and the signal intensity difference of the artificial defect.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: September 18, 2012
    Assignee: JFE Steel Corporation
    Inventors: Yukinori Iizuka, Kazuhito Kenmochi, Hiroyasu Yokoyama, Tomohiro Inoue, Shigeto Sakashita
  • Publication number: 20110100965
    Abstract: There is provided a method for manufacturing a laser welded steel pipe in which the status of laser welding is accurately assessed, and the assessment is used to modify welding conditions, so that laser welded steel pipes can be manufactured at a high yield rate and in a stable manner. Irradiation point(s) of laser beam(s), with which the longitudinal edges are irradiated from the side of the outer surface, are monitored from the side of the inner surface of an open pipe, and then conditions of welding with the laser beam(s) are assessed to be kept unchanged if any keyhole is found penetrating out of the inner surface of the open pipe, or modified if no keyhole is found penetrating out of the inner surface of the open pipe.
    Type: Application
    Filed: June 22, 2009
    Publication date: May 5, 2011
    Applicant: JFE Steel Corporation
    Inventors: Koji Yano, Kenji Oi, Masahito Suzuki, Toshifumi Kodama, Shigeto Sakashita
  • Publication number: 20100107725
    Abstract: An ultrasonic flaw detection is performed to a welded portion 2 of a pipe body 1, a defect detection threshold value is determined based on the signal intensity difference between the total area of the defects existing in the region of an ultrasonic beam on a welded surface and an artificial defect, and a quality control of the pipe body is performed based on the defect detection threshold value. An equivalent defect diameter is determined from the defect density on the welded surface of the welded portion of the pipe body in a pipe axis direction and the area of the ultrasonic beam on the welded surface based on the total area of the defects existing in the region of the ultrasonic beam, and the defect detection threshold value is determined based on the equivalent defect diameter and the signal intensity difference of the artificial defect.
    Type: Application
    Filed: May 18, 2007
    Publication date: May 6, 2010
    Applicant: JFE Steel Corporation
    Inventors: Yukinori Iizuka, Kazuhito Kenmochi, Hiroyasu Yokoyama, Tomohiro Inoue, Shigeto Sakashita
  • Publication number: 20100101326
    Abstract: The present invention has a structure capable of detecting the scattered-type penetrator having oxides each with the size of several ?m sparsely and widely dispersed. Specifically, the structure includes a wave transmission unit 6 for transmitting an ultrasonic wave to the welded surface of the welded portion 2 in a pipe axial direction of the pipe 1 such that the beam width of a transmission beam 8 is brought into a range from 0.5 mm to 2.5 mm, and a wave reception unit 7 for receiving at least a portion of the reflection wave (reception beam 9) at the welded surface. The wave transmission unit 6 and the wave reception unit 7 include transmission/reception units formed of different groups of transducer elements on at least one or more array probes 5 arranged in the circumferential direction of the pipe.
    Type: Application
    Filed: May 18, 2007
    Publication date: April 29, 2010
    Applicant: JFE Steel Corporation
    Inventors: Yukinori Iizuka, Kazuhito Kenmochi, Hiroyasu Yokoyama, Tomohiro Inoue, Shigeto Sakashita
  • Publication number: 20100064495
    Abstract: According to the present invention, penetrators can be adequately determined as flaws. In particular, a welded zone of a pipe is subjected to ultrasonic flaw detection at least in a pipe axial direction, and the quality of the pipe is evaluated using observed values in units of a predetermined area in a pipe thickness direction and the pipe axial direction. The length of one side of the predetermined area is an ultrasound beam width or more and a pipe thickness or less. The quality of the pipe can be evaluated while shifting the predetermined area in the pipe axial direction by using an average value of the observed values within the predetermined area. The length of one side of the predetermined area can be made an ultrasound beam width or more and a pipe thickness or less.
    Type: Application
    Filed: May 18, 2007
    Publication date: March 18, 2010
    Applicant: JFE STEEL CORPORATION
    Inventors: Yukinori Iizuka, Kazuhito Kenmochi, Hiroyasu Yokoyama, Tomohiro Inoue, Shigeto Sakashita
  • Publication number: 20100059484
    Abstract: A method for manufacturing an electric resistance steel pipe having a good toughness at a welded portion is provided, the method being capable of stably manufacturing an electric resistance welded steel pipe having a desirable toughness at a welded portion although a steel strip serving as a base material has a dimensional variation. Groove shapes and are applied to edges and of an open pipe, an edge shape monitor continuously captures images of the edges and immediately before electric resistance welding, and the captured images are input to an arithmetic processing unit for image processing.
    Type: Application
    Filed: February 8, 2008
    Publication date: March 11, 2010
    Applicant: JFE STEEL CORPORATION
    Inventors: Tomohiro Inoue, Shigeto Sakashita, Daijiro Yuasa, Hiroyasu Yokoyama, Kazuhito Kenmochi, Yukinori Iizuka