Patents by Inventor Shigeya Toyokawa

Shigeya Toyokawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180315673
    Abstract: A semiconductor chip has an evaluation pattern that is included in a monitor pattern. This evaluation pattern is constituted by a first pattern and a second pattern opposite to each other in an X direction. Further, the first pattern is constituted by a convex shape protruding in a direction away from the second pattern in the X direction.
    Type: Application
    Filed: April 16, 2018
    Publication date: November 1, 2018
    Inventors: Shigeya TOYOKAWA, Shuhei YAMAGUCHI, Koji HASEGAWA
  • Patent number: 10096467
    Abstract: In an LCD driver, in a high voltage resistant MISFET, end portions of a gate electrode run onto electric field relaxing insulation regions. Wires to become source wires or drain wires are formed on an interlayer insulation film of the first layer over the high voltage resistant MISFET. At this moment, when a distance from an interface between a semiconductor substrate and a gate insulation film to an upper portion of the gate electrode is defined as “a”, and a distance from the upper portion of the gate electrode to an upper portion of the interlayer insulation film on which the wires are formed is defined as “b”, a relation of a>b is established. In such a high voltage resistant MISFET structured in this manner, the wires are arranged so as not to be overlapped planarly with the gate electrode of the high voltage resistant MISFET.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: October 9, 2018
    Assignee: Renesas Electronics Corporation
    Inventors: Yusuke Terada, Shigeya Toyokawa, Atsushi Maeda
  • Publication number: 20180040478
    Abstract: In an LCD driver, in a high voltage resistant MISFET, end portions of a gate electrode run onto electric field relaxing insulation regions. Wires to become source wires or drain wires are formed on an interlayer insulation film of the first layer over the high voltage resistant MISFET. At this moment, when a distance from an interface between a semiconductor substrate and a gate insulation film to an upper portion of the gate electrode is defined as “a”, and a distance from the upper portion of the gate electrode to an upper portion of the interlayer insulation film on which the wires are formed is defined as “b”, a relation of a>b is established. In such a high voltage resistant MISFET structured in this manner, the wires are arranged so as not to be overlapped planarly with the gate electrode of the high voltage resistant MISFET.
    Type: Application
    Filed: October 3, 2017
    Publication date: February 8, 2018
    Inventors: Yusuke TERADA, Shigeya TOYOKAWA, Atsushi MAEDA
  • Patent number: 9812317
    Abstract: In an LCD driver, in a high voltage resistant MISFET, end portions of a gate electrode run onto electric field relaxing insulation regions. Wires to become source wires or drain wires are formed on an interlayer insulation film of the first layer over the high voltage resistant MISFET. At this moment, when a distance from an interface between a semiconductor substrate and a gate insulation film to an upper portion of the gate electrode is defined as “a”, and a distance from the upper portion of the gate electrode to an upper portion of the interlayer insulation film on which the wires are formed is defined as “b”, a relation of a>b is established. In such a high voltage resistant MISFET structured in this manner, the wires are arranged so as not to be overlapped planarly with the gate electrode of the high voltage resistant MISFET.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: November 7, 2017
    Assignee: Renesas Electronics Corporation
    Inventors: Yusuke Terada, Shigeya Toyokawa, Atsushi Maeda
  • Publication number: 20170117143
    Abstract: In an LCD driver, in a high voltage resistant MISFET, end portions of a gate electrode run onto electric field relaxing insulation regions. Wires to become source wires or drain wires are formed on an interlayer insulation film of the first layer over the high voltage resistant MISFET. At this moment, when a distance from an interface between a semiconductor substrate and a gate insulation film to an upper portion of the gate electrode is defined as “a”, and a distance from the upper portion of the gate electrode to an upper portion of the interlayer insulation film on which the wires are formed is defined as “b”, a relation of a>b is established. In such a high voltage resistant MISFET structured in this manner, the wires are arranged so as not to be overlapped planarly with the gate electrode of the high voltage resistant MISFET.
    Type: Application
    Filed: January 4, 2017
    Publication date: April 27, 2017
    Inventors: Yusuke TERADA, Shigeya TOYOKAWA, Atsushi MAEDA
  • Patent number: 9601433
    Abstract: In an LCD driver, in a high voltage resistant MISFET, end portions of a gate electrode run onto electric field relaxing insulation regions. Wires to become source wires or drain wires are formed on an interlayer insulation film of the first layer over the high voltage resistant MISFET. At this moment, when a distance from an interface between a semiconductor substrate and a gate insulation film to an upper portion of the gate electrode is defined as “a”, and a distance from the upper portion of the gate electrode to an upper portion of the interlayer insulation film on which the wires are formed is defined as “b”, a relation of a>b is established. In such a high voltage resistant MISFET structured in this manner, the wires are arranged so as not to be overlapped planarly with the gate electrode of the high voltage resistant MISFET.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: March 21, 2017
    Assignee: Renesas Electronics Corporation
    Inventors: Yusuke Terada, Shigeya Toyokawa, Atsushi Maeda
  • Patent number: 9349463
    Abstract: To enhance the write speed of a nonvolatile memory. A charge injection/emission part of a nonvolatile memory cell includes an active region having an upper face, a side wall, and a shoulder part connecting the upper face and the side wall, a conductor film covering the upper face and the shoulder part of the active region, and a capacitance insulating film provided between the conductor film and the active region. Furthermore, the active region has a protrusion part constituted of a first concave part with respect to the upper face and a second concave part with respect to the side wall, in the shoulder part.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: May 24, 2016
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Shigeya Toyokawa, Michimoto Kaminaga, Kentaro Yamada
  • Publication number: 20160027735
    Abstract: In an LCD driver, in a high voltage resistant MISFET, end portions of a gate electrode run onto electric field relaxing insulation regions. Wires to become source wires or drain wires are formed on an interlayer insulation film of the first layer over the high voltage resistant MISFET. At this moment, when a distance from an interface between a semiconductor substrate and a gate insulation film to an upper portion of the gate electrode is defined as “a”, and a distance from the upper portion of the gate electrode to an upper portion of the interlayer insulation film on which the wires are formed is defined as “b”, a relation of a>b is established. In such a high voltage resistant MISFET structured in this manner, the wires are arranged so as not to be overlapped planarly with the gate electrode of the high voltage resistant MISFET.
    Type: Application
    Filed: October 6, 2015
    Publication date: January 28, 2016
    Inventors: Yusuke Terada, Shigeya Toyokawa, Atsushi Maeda
  • Patent number: 9184126
    Abstract: In an LCD driver, in a high voltage resistant MISFET, end portions of a gate electrode run onto electric field relaxing insulation regions. Wires to become source wires or drain wires are formed on an interlayer insulation film of the first layer over the high voltage resistant MISFET. At this moment, when a distance from an interface between a semiconductor substrate and a gate insulation film to an upper portion of the gate electrode is defined as “a”, and a distance from the upper portion of the gate electrode to an upper portion of the interlayer insulation film on which the wires are formed is defined as “b”, a relation of a>b is established. In such a high voltage resistant MISFET structured in this manner, the wires are arranged so as not to be overlapped planarly with the gate electrode of the high voltage resistant MISFET.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: November 10, 2015
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Yusuke Terada, Shigeya Toyokawa, Atsushi Maeda
  • Publication number: 20150311220
    Abstract: To enhance the write speed of a nonvolatile memory. A charge injection/emission part of a nonvolatile memory cell includes an active region having an upper face, a side wall, and a shoulder part connecting the upper face and the side wall, a conductor film covering the upper face and the shoulder part of the active region, and a capacitance insulating film provided between the conductor film and the active region. Furthermore, the active region has a protrusion part constituted of a first concave part with respect to the upper face and a second concave part with respect to the side wall, in the shoulder part.
    Type: Application
    Filed: April 6, 2015
    Publication date: October 29, 2015
    Inventors: Shigeya TOYOKAWA, Michimoto KAMINAGA, Kentaro YAMADA
  • Publication number: 20150155231
    Abstract: In an LCD driver, in a high voltage resistant MISFET, end portions of a gate electrode run onto electric field relaxing insulation regions. Wires to become source wires or drain wires are formed on an interlayer insulation film of the first layer over the high voltage resistant MISFET. At this moment, when a distance from an interface between a semiconductor substrate and a gate insulation film to an upper portion of the gate electrode is defined as “a”, and a distance from the upper portion of the gate electrode to an upper portion of the interlayer insulation film on which the wires are formed is defined as “b”, a relation of a>b is established. In such a high voltage resistant MISFET structured in this manner, the wires are arranged so as not to be overlapped planarly with the gate electrode of the high voltage resistant MISFET.
    Type: Application
    Filed: February 9, 2015
    Publication date: June 4, 2015
    Inventors: Yusuke Terada, Shigeya Toyokawa, Atsushi Maeda
  • Patent number: 8975127
    Abstract: In an LCD driver, in a high voltage resistant MISFET, end portions of a gate electrode run onto electric field relaxing insulation regions. Wires to become source wires or drain wires are formed on an interlayer insulation film of the first layer over the high voltage resistant MISFET. At this moment, when a distance from an interface between a semiconductor substrate and a gate insulation film to an upper portion of the gate electrode is defined as “a”, and a distance from the upper portion of the gate electrode to an upper portion of the interlayer insulation film on which the wires are formed is defined as “b”, a relation of a>b is established. In such a high voltage resistant MISFET structured in this manner, the wires are arranged so as not to be overlapped planarly with the gate electrode of the high voltage resistant MISFET.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: March 10, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Yusuke Terada, Shigeya Toyokawa, Atsushi Maeda
  • Publication number: 20140051219
    Abstract: In an LCD driver, in a high voltage resistant MISFET, end portions of a gate electrode run onto electric field relaxing insulation regions. Wires to become source wires or drain wires are formed on an interlayer insulation film of the first layer over the high voltage resistant MISFET. At this moment, when a distance from an interface between a semiconductor substrate and a gate insulation film to an upper portion of the gate electrode is defined as “a”, and a distance from the upper portion of the gate electrode to an upper portion of the interlayer insulation film on which the wires are formed is defined as “b”, a relation of a>b is established. In such a high voltage resistant MISFET structured in this manner, the wires are arranged so as not to be overlapped planarly with the gate electrode of the high voltage resistant MISFET.
    Type: Application
    Filed: October 22, 2013
    Publication date: February 20, 2014
    Applicant: Renesas Electronics Corporation
    Inventors: Yusuke TERADA, Shigeya TOYOKAWA, Atsushi MAEDA
  • Patent number: 8604526
    Abstract: In an LCD driver, in a high voltage resistant MISFET, end portions of a gate electrode run onto electric field relaxing insulation regions. Wires to become source wires or drain wires are formed on an interlayer insulation film of the first layer over the high voltage resistant MISFET. At this moment, when a distance from an interface between a semiconductor substrate and a gate insulation film to an upper portion of the gate electrode is defined as “a”, and a distance from the upper portion of the gate electrode to an upper portion of the interlayer insulation film on which the wires are formed is defined as “b”, a relation of a>b is established. In such a high voltage resistant MISFET structured in this manner, the wires are arranged so as not to be overlapped planarly with the gate electrode of the high voltage resistant MISFET.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: December 10, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yusuke Terada, Shigeya Toyokawa, Atsushi Maeda
  • Patent number: 8546905
    Abstract: To reduce size of a finished product by reducing the number of externally embedded parts, embedding of a Schottky barrier diode relatively large in the amount of current in a semiconductor integrated circuit device has been pursued. It is general practice to densely arrange a number of contact electrodes in a matrix over a Schottky junction region. A sputter etching process to the surface of a silicide layer at the bottom of each contact hole is performed before a barrier metal layer is deposited. However, in a structure in which electrodes are thus arranged over a Schottky junction region, a reverse leakage current in a Schottky barrier diode is varied by variations in the amount of sputter etching. The present invention is a semiconductor integrated circuit device having a Schottky barrier diode in which contact electrodes are arranged over a guard ring in contact with a peripheral isolation region.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: October 1, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Kunihiko Kato, Shigeya Toyokawa, Kozo Watanabe, Masatoshi Taya
  • Publication number: 20120326262
    Abstract: To reduce size of a finished product by reducing the number of externally embedded parts, embedding of a Schottky barrier diode relatively large in the amount of current in a semiconductor integrated circuit device has been pursued. It is general practice to densely arrange a number of contact electrodes in a matrix over a Schottky junction region. A sputter etching process to the surface of a silicide layer at the bottom of each contact hole is performed before a barrier metal layer is deposited. However, in a structure in which electrodes are thus arranged over a Schottky junction region, a reverse leakage current in a Schottky barrier diode is varied by variations in the amount of sputter etching. The present invention is a semiconductor integrated circuit device having a Schottky barrier diode in which contact electrodes are arranged over a guard ring in contact with a peripheral isolation region.
    Type: Application
    Filed: February 10, 2012
    Publication date: December 27, 2012
    Inventors: Kunihiko KATO, Shigeya TOYOKAWA, Kozo WATANABE, Masatoshi TAYA
  • Patent number: 8222712
    Abstract: To achieve a further reduction in the size of a finished product by reducing the number of externally embedded parts, the embedding of a Schottky barrier diode which is relatively large in the amount of current in a semiconductor integrated circuit device has been pursued. In such a case, it is general practice to densely arrange a large number of contact electrodes in a matrix over a Schottky junction region. It has been widely performed to perform a sputter etching process with respect to the surface of a silicide layer at the bottom of each contact hole before a barrier metal layer is deposited. However, in a structure in which electrodes are thus arranged over a Schottky junction region, a reverse leakage current in a Schottky barrier diode is varied by variations in the amount of sputter etching. The present invention is a semiconductor integrated circuit device having a Schottky barrier diode in which contact electrodes are arranged over a guard ring in contact with a peripheral isolation region.
    Type: Grant
    Filed: March 8, 2009
    Date of Patent: July 17, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Kunihiko Kato, Shigeya Toyokawa, Kozo Watanabe, Masatoshi Taya
  • Publication number: 20120037965
    Abstract: In an LCD driver, in a high voltage resistant MISFET, end portions of a gate electrode run onto electric field relaxing insulation regions. Wires to become source wires or drain wires are formed on an interlayer insulation film of the first layer over the high voltage resistant MISFET. At this moment, when a distance from an interface between a semiconductor substrate and a gate insulation film to an upper portion of the gate electrode is defined as “a”, and a distance from the upper portion of the gate electrode to an upper portion of the interlayer insulation film on which the wires are formed is defined as “b”, a relation of a>b is established. In such a high voltage resistant MISFET structured in this manner, the wires are arranged so as not to be overlapped planarly with the gate electrode of the high voltage resistant MISFET.
    Type: Application
    Filed: October 26, 2011
    Publication date: February 16, 2012
    Inventors: Yusuke Terada, Shigeya Toyokawa, Atsushi Maeda
  • Patent number: 8072035
    Abstract: In an LCD driver, in a high voltage resistant MISFET, end portions of a gate electrode run onto electric field relaxing insulation regions. Wires to become source wires or drain wires are formed on an interlayer insulation film of the first layer over the high voltage resistant MISFET. At this moment, when a distance from an interface between a semiconductor substrate and a gate insulation film to an upper portion of the gate electrode is defined as “a”, and a distance from the upper portion of the gate electrode to an upper portion of the interlayer insulation film on which the wires are formed is defined as “b”, a relation of a>b is established. In such a high voltage resistant MISFET structured in this manner, the wires are arranged so as not to be overlapped planarly with the gate electrode of the high voltage resistant MISFET.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: December 6, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Yusuke Terada, Shigeya Toyokawa, Atsushi Maeda
  • Publication number: 20090243027
    Abstract: To achieve a further reduction in the size of a finished product by reducing the number of externally embedded parts, the embedding of a Schottky barrier diode which is relatively large in the amount of current in a semiconductor integrated circuit device has been pursued. In such a case, it is general practice to densely arrange a large number of contact electrodes in a matrix over a Schottky junction region. It has been widely performed to perform a sputter etching process with respect to the surface of a silicide layer at the bottom of each contact hole before a barrier metal layer is deposited. However, in a structure in which electrodes are thus arranged over a Schottky junction region, a reverse leakage current in a Schottky barrier diode is varied by variations in the amount of sputter etching. The present invention is a semiconductor integrated circuit device having a Schottky barrier diode in which contact electrodes are arranged over a guard ring in contact with a peripheral isolation region.
    Type: Application
    Filed: March 8, 2009
    Publication date: October 1, 2009
    Inventors: Kunihiko KATO, Shigeya TOYOKAWA, Kozo WATANABE, Masatoshi TAYA