Patents by Inventor Shih-Chieh Chang

Shih-Chieh Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10991826
    Abstract: A device includes a fin extending from a substrate, a gate stack over and along sidewalls of the fin, a gate spacer along a sidewall of the gate stack, and an epitaxial source/drain region in the fin and adjacent the gate spacer. The epitaxial source/drain region includes a first epitaxial layer on the fin, the first epitaxial layer including silicon, germanium, and arsenic, and a second epitaxial layer on the first epitaxial layer, the second epitaxial layer including silicon and phosphorus, the first epitaxial layer separating the second epitaxial layer from the fin. The epitaxial source/drain region further includes a third epitaxial layer on the second epitaxial layer, the third epitaxial layer including silicon, germanium, and phosphorus.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: April 27, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yu Ma, Shahaji B. More, Yi-Min Huang, Shih-Chieh Chang
  • Publication number: 20210118740
    Abstract: A semiconductor device and method includes: forming a gate stack over a substrate; growing a source/drain region adjacent the gate stack, the source/drain region being n-type doped Si; growing a semiconductor cap layer over the source/drain region, the semiconductor cap layer having Ge impurities, the source/drain region free of the Ge impurities; depositing a metal layer over the semiconductor cap layer; annealing the metal layer and the semiconductor cap layer to form a silicide layer over the source/drain region, the silicide layer having the Ge impurities; and forming a metal contact electrically coupled to the silicide layer.
    Type: Application
    Filed: December 28, 2020
    Publication date: April 22, 2021
    Inventors: Shahaji B. More, Zheng-Yang Pan, Cheng-Han Lee, Shih-Chieh Chang
  • Patent number: 10950603
    Abstract: A process for manufacturing a semiconductor device and the resulting structure are presented. In an embodiment a source/drain region is grown. Once grown, the source/drain region is reshaped in order to remove facets. The reshaping may be performed using an etching process whereby a lateral etch rate of the source/drain region is larger than a vertical etch rate of the source/drain region.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: March 16, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Chieh Chang, Cheng-Han Lee, Yi-Min Huang
  • Patent number: 10937910
    Abstract: A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a gate structure formed over a fin structure and a gate spacer formed on a sidewall surface of the gate structure. The semiconductor structure also includes a first source/drain (S/D) epitaxial layer formed in the fin structure and adjacent to the gate spacer, and a second S/D epitaxial layer formed over the first S/D epitaxial layer. A top surface of the second S/D layer is higher than a top surface of the first S/D epitaxial layer.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: March 2, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Chun-Chieh Wang, Yu-Ting Lin, Yueh-Ching Pai, Shih-Chieh Chang, Huai-Tei Yang
  • Patent number: 10930781
    Abstract: In certain embodiments, a semiconductor device includes a substrate having an n-doped well feature and an epitaxial silicon germanium fin formed over the n-doped well feature. The epitaxial silicon germanium fin has a lower part and an upper part. The lower part has a lower germanium content than the upper part. A channel is formed from the epitaxial silicon germanium fin. A gate is formed over the epitaxial silicon germanium fin. A doped source-drain is formed proximate the channel.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: February 23, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventors: Shahaji B. More, Huai-Tei Yang, Shih-Chieh Chang, Shu Kuan, Cheng-Han Lee
  • Publication number: 20210050433
    Abstract: Semiconductor structures and method for forming the same are provide. The semiconductor structure includes a fin structure protruding from a substrate and a gate structure formed across the fin structure. The semiconductor structure further includes an Arsenic-doped region formed in the fin structure and a source/drain structure formed over the Arsenic-doped region. In addition, a bottommost portion of the Arsenic-doped region is lower than a bottommost portion of the source/drain structure.
    Type: Application
    Filed: November 4, 2020
    Publication date: February 18, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shahaji B. MORE, Shih-Chieh CHANG, Cheng-Han LEE, Huai-Tei YANG
  • Publication number: 20210004678
    Abstract: A neural circuit is provided. The neural circuit includes a neural array. The neural array includes a plurality of semiconductor components. Each of the semiconductor components stores a weighting value to generate a corresponding output current or a corresponding equivalent resistance. The neural array receives a plurality of input signals to control the semiconductor components in the neural array and respectively generates the output currents or changes the equivalent resistances. Since the semiconductor components are coupled to each other, output of the neural array may generate a summation current or a summation equivalent resistance related to the input signals and a weighting condition, so that a computing result exhibits high performance.
    Type: Application
    Filed: April 13, 2020
    Publication date: January 7, 2021
    Applicant: Industrial Technology Research Institute
    Inventors: Shih-Chieh Chang, Sih-Han Li, Shyh-Shyuan Sheu, Jian-Wei Su, Heng-Yuan Lee
  • Patent number: 10879124
    Abstract: The present disclosure describes an exemplary fabrication method of a p-type fully strained channel that can suppress the formation of {111} facets during a silicon germanium epitaxial growth. The exemplary method includes the formation of silicon epitaxial layer on a top, carbon-doped region of an n-type region. A recess is formed in the silicon epitaxial layer via etching, where the recess exposes the top, carbon-doped region of the n-type region. A silicon seed layer is grown in the recess, and a silicon germanium layer is subsequently epitaxially grown on the silicon seed layer to fill the recess. The silicon seed layer can suppress the formation of growth defects such as, for example, {111} facets, during the silicon germanium epitaxial layer growth.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: December 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Chieh Wang, Huai-Tei Yang, Zheng-Yang Pan, Shahaji B. More, Shih-Chieh Chang, Cheng-Han Lee
  • Patent number: 10879396
    Abstract: A method for forming a semiconductor device is provided. The method includes forming a gate stack to partially cover a semiconductor structure. The method also includes forming a first semiconductor material over the semiconductor structure. The method further includes forming a second semiconductor material over the first semiconductor material. In addition, the method includes forming a third semiconductor material over the second semiconductor material. The first semiconductor material and the third semiconductor material together surround the second semiconductor material. The second semiconductor material has a greater dopant concentration than that of the first semiconductor material or that of the third semiconductor material.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: December 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shahaji B. More, Zheng-Yang Pan, Chun-Chieh Wang, Cheng-Han Lee, Shih-Chieh Chang
  • Patent number: 10879126
    Abstract: A semiconductor device and method includes: forming a gate stack over a substrate; growing a source/drain region adjacent the gate stack, the source/drain region being n-type doped Si; growing a semiconductor cap layer over the source/drain region, the semiconductor cap layer having Ge impurities, the source/drain region free of the Ge impurities; depositing a metal layer over the semiconductor cap layer; annealing the metal layer and the semiconductor cap layer to form a silicide layer over the source/drain region, the silicide layer having the Ge impurities; and forming a metal contact electrically coupled to the silicide layer.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: December 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shahaji B. More, Zheng-Yang Pan, Cheng-Han Lee, Shih-Chieh Chang
  • Patent number: 10879240
    Abstract: A fin field effect transistor (FinFET) device structure and method for forming the same are provided. The FinFET device structure includes a fin structure extending above a substrate. The fin structure includes a channel region, a portion of the channel region is made of silicon germanium (SiGe), and the silicon germanium (SiGe) has a gradient germanium (Ge) concentration. The FinFET device structure includes a gate structure formed on the channel region of the fin structure.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: December 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Chieh Wang, Zheng-Yang Pan, Shih-Chieh Chang, Yi-Min Huang, Shahaji B. More, Tsung-Lin Lee
  • Patent number: 10867799
    Abstract: A FinFET device and method of forming the same are disclosed. The method includes forming a gate dielectric layer and depositing a metal oxide layer over the gate dielectric layer. The method also includes annealing the gate dielectric layer and the metal oxide layer, causing ions to diffuse from the metal oxide layer to the gate dielectric layer to form a doped gate dielectric layer. The method also includes forming a work function layer over the doped gate dielectric layer, and forming a gate electrode over the work function layer.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Chieh Wang, Zheng-Yang Pan, Shih-Chieh Chang, Cheng-Han Lee, Huai-Tei Yang, Shahaji B. More
  • Patent number: 10868183
    Abstract: A semiconductor device includes a substrate; a fin protruding above the substrate, the fin including a compound semiconductor material that includes a semiconductor material and a first dopant, the first dopant having a different lattice constant than the semiconductor material, where a concentration of the first dopant in the fin changes along a first direction from an upper surface of the fin toward the substrate; a gate structure over the fin; a channel region in the fin and directly under the gate structure; and source/drain regions on opposing sides of the gate structure, the source/drain regions including a second dopant, where a concentration of the second dopant at a first location within the channel region is higher than that at a second location within the channel region, where the concentration of the first dopant at the first location is lower than that at the second location.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shahaji B. More, Shih-Chieh Chang, Cheng-Han Lee
  • Publication number: 20200381534
    Abstract: Semiconductor structures are provided. The semiconductor structure includes a fin structure protruding from a substrate and a doped region formed in the fin structure. The semiconductor structure further includes a metal gate structure formed across the fin structure and a gate spacer formed on a sidewall of the metal gate structure. The semiconductor structure further includes a source/drain structure formed over the doped region. In addition, the doped region continuously surrounds the source/drain structure and is in direct contact with the gate spacer.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shahaji B. MORE, Chun-Hsiung TSAI, Cheng-Yi PENG, Shih-Chieh CHANG, Kuo-Feng YU
  • Patent number: 10855197
    Abstract: A power supply system includes a power supply assembly, an auxiliary power circuit and a control unit. The power supply assembly converts input power into a first DC power when the input power outputted from an input power source is normal. The auxiliary power circuit includes at least one energy storage unit for providing a second DC power and power converter electrically connected between the energy storage unit and the load for converting the second DC power into an individual auxiliary power. The control unit drives the auxiliary power circuit to provide an overall auxiliary power to the load when the input power is normal and a transient power required by the load is greater than a upper limit rated value of an output power outputted from the power supply assembly, so as to compensate a difference value between the transient power and the upper limit rated value.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: December 1, 2020
    Assignee: DELTA ELECTRONICS, INC.
    Inventor: Shih-Chieh Chang
  • Publication number: 20200365720
    Abstract: A method includes providing a substrate having a gate structure over a first side of the substrate, forming a recess adjacent to the gate structure, and forming in the recess a first semiconductor layer having a dopant, the first semiconductor layer being non-conformal, the first semiconductor layer lining the recess and extending from a bottom of the recess to a top of the recess. The method further includes forming a second semiconductor layer having the dopant in the recess and over the first semiconductor layer, a second concentration of the dopant in the second semiconductor layer being higher than a first concentration of the dopant in the first semiconductor layer.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventors: Chih-Yu Ma, Zheng-Yang Pan, Shahaji B. More, Shih-Chieh Chang, Cheng-Han Lee
  • Patent number: 10840358
    Abstract: Semiconductor structures and method for forming the same are provide. The method includes forming a gate structure over a substrate and forming a recess in the substrate adjacent to the gate structure. The method further includes forming a doped region at a sidewall and a bottom surface of the recess and partially removing the doped region to modify a shape of the recess. The method further includes forming a source/drain structure over a remaining portion of the doped region.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: November 17, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shahaji B. More, Shih-Chieh Chang, Cheng-Han Lee, Huai-Tei Yang
  • Patent number: 10833074
    Abstract: A process for manufacturing a semiconductor device and the resulting structure are presented. In an embodiment a source/drain region is grown. Once grown, the source/drain region is reshaped in order to remove facets. The reshaping may be performed using an etching process whereby a lateral etch rate of the source/drain region is larger than a vertical etch rate of the source/drain region.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: November 10, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Chieh Chang, Cheng-Han Lee, Yi-Min Huang
  • Publication number: 20200350435
    Abstract: A device includes a fin extending from a substrate, a gate stack over and along sidewalls of the fin, a gate spacer along a sidewall of the gate stack, and an epitaxial source/drain region in the fin and adjacent the gate spacer. The epitaxial source/drain region includes a first epitaxial layer on the fin, the first epitaxial layer including silicon, germanium, and arsenic, and a second epitaxial layer on the first epitaxial layer, the second epitaxial layer including silicon and phosphorus, the first epitaxial layer separating the second epitaxial layer from the fin. The epitaxial source/drain region further includes a third epitaxial layer on the second epitaxial layer, the third epitaxial layer including silicon, germanium, and phosphorus.
    Type: Application
    Filed: July 20, 2020
    Publication date: November 5, 2020
    Inventors: Chih-Yu Ma, Shahaji B. More, Yi-Min Huang, Shih-Chieh Chang
  • Publication number: 20200338474
    Abstract: An oil-water separator with an oil discharge outlet adjusting spontaneously includes a liquid storage tank with grease and wastewater, a telescopic pipe in the liquid storage tank, and a floater unit connected with the telescopic pipe. The liquid storage tank comprises an inlet for grease and wastewater input, and a water outlet for wastewater output. The floater unit comprises at least one floater floating between grease and wastewater, and an isolation member extending in the height direction between the floater and the telescopic pipe. The isolation member fluctuates along with height changes of wastewater and includes an oil discharge outlet for grease entering the telescopic pipe. Therefore, an oil outlet, adjusting height spontaneously, is configured by the at least one floater, such that the overall height is reduced, a sufficient difference of levels of grease and wastewater is generated by the isolation member, thereby improving the oil-water separation effect.
    Type: Application
    Filed: April 27, 2020
    Publication date: October 29, 2020
    Applicant: JENFU MACHINERY CO., LTD.
    Inventors: CHIN-LUN CHANG, CHENG-HAN CHANG, SHIH-CHIEH CHANG