Patents by Inventor Shih-Fen Huang

Shih-Fen Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240140782
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes a first device and a second device disposed adjacent to the first device; a conductive pillar disposed adjacent to the first device or the second device; a molding surrounding the first device, the second device and the conductive pillar; and a redistribution layer (RDL) over the first device, the second device, the molding and the conductive pillar, wherein the RDL electrically connects the first device to the second device and includes an opening penetrating the RDL and exposing a sensing area over the first device.
    Type: Application
    Filed: January 5, 2024
    Publication date: May 2, 2024
    Inventors: PO CHEN YEH, YI-HSIEN CHANG, FU-CHUN HUANG, CHING-HUI LIN, CHIAHUNG LIU, SHIH-FEN HUANG, CHUN-REN CHENG
  • Patent number: 11923429
    Abstract: A semiconductor device and method for forming the semiconductor device are provided. In some embodiments, a semiconductor substrate comprises a device region. An isolation structure extends laterally in a closed path to demarcate the device region. A first source/drain region and a second source/drain region are in the device region and laterally spaced. A sidewall of the first source/drain region directly contacts the isolation structure at a first isolation structure sidewall, and remaining sidewalls of the first source/drain region are spaced from the isolation structure. A selectively-conductive channel is in the device region, and extends laterally from the first source/drain region to the second source/drain region. A plate comprises a central portion and a first peripheral portion. The central portion overlies the selectively-conductive channel, and the first peripheral portion protrudes from the central portion towards the first isolation structure sidewall.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Chang Cheng, Fu-Yu Chu, Ming-Ta Lei, Ruey-Hsin Liu, Shih-Fen Huang
  • Patent number: 11923352
    Abstract: A semiconductor device is provided. The semiconductor device comprises a first semiconductor die comprising a first capacitor, and a second semiconductor die in contact with the first semiconductor die and comprises a diode. The first semiconductor die and the second semiconductor die are arranged along a first direction, and a diode is configured to direct electrons accumulated at the first capacitor to a ground.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: March 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Hsin-Li Cheng, Shu-Hui Su, Yu-Chi Chang, Yingkit Felix Tsui, Shih-Fen Huang
  • Patent number: 11897759
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes a first device and a second device disposed adjacent to the first device; a conductive pillar disposed adjacent to the first device or the second device; a molding surrounding the first device, the second device and the conductive pillar; and a redistribution layer (RDL) over the first device, the second device, the molding and the conductive pillar, wherein the RDL electrically connects the first device to the second device and includes an opening penetrating the RDL and exposing a sensing area over the first device.
    Type: Grant
    Filed: June 10, 2022
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Po Chen Yeh, Yi-Hsien Chang, Fu-Chun Huang, Ching-Hui Lin, Chiahung Liu, Shih-Fen Huang, Chun-Ren Cheng
  • Publication number: 20230420452
    Abstract: Embodiments include a FinFET transistor including an embedded resistor disposed in the fin between the source epitaxial region and the source contact. A control contact may be used to bias the embedded resistor, thereby changing the resistivity of the resistor. Edge gates of the FinFET transistor may be replaced with insulating structures. Multiple ones of the FinFET/embedded resistor combination may be utilized together in a common drain/common source contact design.
    Type: Application
    Filed: June 24, 2022
    Publication date: December 28, 2023
    Inventors: Kai-Qiang Wen, Shih-Fen Huang, Shih-Chun Fu, Chi-Yuan Shih, Feng Yuan, Wan-Lin Tsai, Chung-Liang Cheng
  • Patent number: 11856862
    Abstract: In some embodiments, the present disclosure relates to a method in which a first set of one or more voltage pulses is applied to a piezoelectric device over a first time period. During the first time period, the method determines whether a performance parameter of the piezoelectric device has a first value that deviates from a reference value by more than a predetermined value. Based on whether the first value deviates from the reference value by more than the predetermined value, the method selectively applies a second set of one or more voltage pulses to the piezoelectric device over a second time period. The second time period is after the first time period and the second set of one or more voltage pulses differs in magnitude and/or polarity from the first set of one or more voltage pulses.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Yuan Shih, Shih-Fen Huang, You-Ru Lin, Yan-Jie Liao
  • Publication number: 20230399225
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes a first device and a second device disposed adjacent to the first device; a conductive pillar disposed adjacent to the first device or the second device; a molding surrounding the first device, the second device and the conductive pillar; and a redistribution layer (RDL) over the first device, the second device, the molding and the conductive pillar, wherein the RDL electrically connects the first device to the second device and includes an opening penetrating the RDL and exposing a sensing area over the first device.
    Type: Application
    Filed: June 10, 2022
    Publication date: December 14, 2023
    Inventors: PO CHEN YEH, YI-HSIEN CHANG, FU-CHUN HUANG, CHING-HUI LIN, CHIAHUNG LIU, SHIH-FEN HUANG, CHUN-REN CHENG
  • Publication number: 20230386948
    Abstract: A semiconductor device and method of forming such a device includes a MEMS component including one or more MEMS pixels and having a MEMS membrane substrate and a MEMS sidewall. The semiconductor device includes an analog circuit component bonded to the MEMS component, and which includes at least one analog CMOS component within an analog circuit insulative layer, and an analog circuit component substrate. The semiconductor device includes an HPC component bonded to the analog circuit component substrate. The HPC component includes at least one HPC metal component disposed within an HPC insulative layer, at least one bond pad, at least one bond pad via connecting the at least one bond pad and the at least one HPC metal component, and an HPC substrate. Additionally, the semiconductor device includes a DTC component bonded to the HPC substrate, and which includes a DTC die disposed in a DTC substrate.
    Type: Application
    Filed: May 25, 2022
    Publication date: November 30, 2023
    Inventors: You-Ru Lin, Sheng Kai Yeh, Jen-Yuan Chang, Chi-Yuan Shih, Chia-Ming Hung, Hsiang-Fu Chen, Shih-Fen Huang
  • Publication number: 20230381815
    Abstract: A method of forming a transducer includes depositing a first dielectric layer on a first electrode, patterning the first dielectric layer to form first protrusions and second protrusions, where a first diameter of each of the first protrusions is larger than a second diameter of each of the second protrusions; and bonding the first dielectric layer to a second electrode using a second dielectric layer, where sidewalls of the second dielectric layer define a cavity disposed between the first electrode and the second electrode, and where the first protrusions are disposed in the cavity.
    Type: Application
    Filed: May 24, 2022
    Publication date: November 30, 2023
    Inventors: Chi-Yuan Shih, Shih-Fen Huang, Yan-Jie Liao, Wen-Chuan Tai
  • Publication number: 20230387164
    Abstract: The present disclosure relates to an integrated chip including a semiconductor layer and a photodetector disposed along the semiconductor layer. A color filter is over the photodetector. A micro-lens is over the color filter. A dielectric structure comprising one or more dielectric layers is over the micro-lens. A receptor layer is over the dielectric structure. An optical signal enhancement structure is disposed along the dielectric structure and between the receptor layer and the micro-lens.
    Type: Application
    Filed: May 25, 2022
    Publication date: November 30, 2023
    Inventors: Yi-Hsien Chang, Shih-Fen Huang, Chun-Ren Cheng, Fu-Chun Huang, Ching-Hui Lin
  • Publication number: 20230375500
    Abstract: A bioFET device includes a semiconductor substrate having a first surface and an opposite, parallel second surface and a plurality of bioFET sensors on the semiconductor substrate. Each of the bioFET sensors includes a gate formed on the first surface of the semiconductor substrate and a channel region formed within the semiconductor substrate beneath the gate and between source/drain (S/D) regions in the semiconductor substrate. The channel region includes a portion of the second surface of the semiconductor substrate. An isolation layer is disposed on the second surface of the semiconductor substrate. The isolation layer has an opening positioned over the channel region of more than one bioFET sensor of the plurality of bioFET sensors. An interface layer is disposed on the channel region of the more than one bioFET sensor in the opening.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Applicant: Tawian Semiconductor Manufacturing Co., Ltd.
    Inventors: Jui-Cheng Huang, Yi-Hsien Chang, Chin-Hua Wen, Chun-Ren Cheng, Shih-Fen Huang, Tung-Tsun Chen, Yu-Jie Huang, Ching-Hui Lin, Sean Cheng, Hector Chang
  • Publication number: 20230372970
    Abstract: A method of forming a transducer includes depositing a first dielectric layer on a first electrode, patterning the first dielectric layer to form a plurality of first protrusions in a first region and a plurality of second protrusions in a second region, where a density of the plurality of first protrusions in the first region is different from a density of the plurality of second protrusions in the second region, and bonding the first dielectric layer to a second electrode using a second dielectric layer, where sidewalls of the second dielectric layer define a cavity disposed between the first electrode and the second electrode, and where the plurality of first protrusions and the plurality of second protrusions are disposed in the cavity.
    Type: Application
    Filed: May 18, 2022
    Publication date: November 23, 2023
    Inventors: Yan-Jie Liao, Shih-Fen Huang, Chi-Yuan Shih
  • Publication number: 20230378251
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip including a capacitor over a substrate. The capacitor includes a plurality of conductive layers and a plurality of dielectric layers. The plurality of conductive layers and dielectric layers define a base structure and a first protrusion structure extending downward from the base structure towards a bottom surface of the substrate. The first protrusion structure comprises one or more surfaces defining a first cavity. A top of the first cavity is disposed below the base structure.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Inventors: Hsin-Li Cheng, Jyun-Ying Lin, Alexander Kalnitsky, Shih-Fen Huang, Shu-Hui Su, Ting-Chen Hsu, Tuo-Hsin Chien, Felix Ying-Kit Tsui, Shi-Min Wu, Yu-Chi Chang
  • Patent number: 11808731
    Abstract: A bioFET device includes a semiconductor substrate having a first surface and an opposite, parallel second surface and a plurality of bioFET sensors on the semiconductor substrate. Each of the bioFET sensors includes a gate formed on the first surface of the semiconductor substrate and a channel region formed within the semiconductor substrate beneath the gate and between source/drain (S/D) regions in the semiconductor substrate. The channel region includes a portion of the second surface of the semiconductor substrate. An isolation layer is disposed on the second surface of the semiconductor substrate. The isolation layer has an opening positioned over the channel region of more than one bioFET sensor of the plurality of bioFET sensors. An interface layer is disposed on the channel region of the more than one bioFET sensor in the opening.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: November 7, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jui-Cheng Huang, Yi-Hsien Chang, Chin-Hua Wen, Chun-Ren Cheng, Shih-Fen Huang, Tung-Tsun Chen, Yu-Jie Huang, Ching-Hui Lin, Sean Cheng, Hector Chang
  • Publication number: 20230317714
    Abstract: A method includes: forming a fin protruding from a substrate; implanting an n-type dopant in the fin to form an n-type channel region; implanting a p-type dopant in the fin to form a p-type channel region adjacent the n-type channel region; forming a first gate structure over the n-type channel region and a second gate structure over the p-type channel region; forming a first epitaxial region in the fin adjacent a first side of the first gate structure; forming a second epitaxial region in the fin adjacent a second side of the first gate structure and adjacent a first side of the second gate structure; and forming a third epitaxial region in the fin adjacent a second side of the second gate structure.
    Type: Application
    Filed: March 29, 2022
    Publication date: October 5, 2023
    Inventors: Kai-Qiang Wen, Shih-Fen Huang, Shih-Chun Fu, Chi-Yuan Shih, Feng Yuan
  • Publication number: 20230320227
    Abstract: A method for manufacturing a semiconductor structure is provided. The method may include several operations. A piezoelectric capacitor is formed over a substrate, wherein the piezoelectric capacitor includes a metal electrode. An intermediate layer is formed on the metal electrode, and is patterned using a first mask layer as a mask. A metal layer is formed on the intermediate layer, wherein the metal layer electrically connects to the metal electrode. The metal layer is patterned using a second mask layer, wherein the intermediate layer is within a coverage area of the metal layer from a top-view perspective after the patterning of the metal layer. A semiconductor structure thereof is also provided.
    Type: Application
    Filed: March 29, 2022
    Publication date: October 5, 2023
    Inventors: CHING-HUI LIN, FU-CHUN HUANG, CHUN-REN CHENG, WEI CHUN WANG, CHAO-HUNG CHU, YI-HSIEN CHANG, PO-CHEN YEH, CHI-YUAN SHIH, SHIH-FEN HUANG, YAN-JIE LIAO, SHENG KAI YEH
  • Publication number: 20230302494
    Abstract: The present disclosure relates to an integrated chip structure. The integrated chip structure includes a dielectric stack disposed on a substrate. The integrated chip structure further includes one or more piezoelectric ultrasonic transducers (PMUTs) and one or more capacitive ultrasonic transducers (CMUTs). The one or more PMUTs include a piezoelectric stack disposed within the dielectric stack over one or more PMUT cavities. The one or more CMUTs include electrodes disposed within the dielectric stack and separated by one or more CMUT cavities. An isolation chamber is arranged within the dielectric stack laterally between the one or more PMUTs and the one or more CMUTs. The isolation chamber vertically extends past at least a part of both the one or more PMUTs and the one or more CMUTs.
    Type: Application
    Filed: June 6, 2022
    Publication date: September 28, 2023
    Inventors: Ching-Hui Lin, Yi-Hsien Chang, Chun-Ren Cheng, Fu-Chun Huang, Yi Heng Tsai, Shih-Fen Huang, Chao-Hung Chu, Po-Chen Yeh
  • Patent number: 11769792
    Abstract: Various embodiments of the present disclosure are directed towards an integrated circuit (IC) including a substrate comprising sidewalls that define a trench. A capacitor comprising a plurality of conductive layers and a plurality of dielectric layers that define a trench segment is disposed within the trench. A width of the trench segment continuously increases from a front-side surface of the substrate in a direction towards a bottom surface of the trench.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: September 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Li Cheng, Jyun-Ying Lin, Alexander Kalnitsky, Shih-Fen Huang, Shu-Hui Su, Ting-Chen Hsu, Tuo-Hsin Chien, Felix Ying-Kit Tsui, Shi-Min Wu, Yu-Chi Chang
  • Publication number: 20230290688
    Abstract: A device includes a fin on a substrate; a first transistor, including: a drain region and a first source region in the fin; and a first gate structure on the fin between the first source region and the drain region; a second transistor, including: the drain region and a second source region in the fin; and a second gate structure on the fin between the second source region and the drain region; a first resistor, including: the first source region and a first resistor region in the fin; and a third gate structure on the fin between the first source region and the first resistor region; and a second resistor, including: the second source region and a second resistor region in the fin; and a fourth gate structure on the fin between the second source region and the second resistor region.
    Type: Application
    Filed: March 11, 2022
    Publication date: September 14, 2023
    Inventors: Kai-Qiang Wen, Shih-Fen Huang, Shih-Chun Fu, Chi-Yuan Shih, Feng Yuan
  • Publication number: 20230288369
    Abstract: A sensor array includes a semiconductor substrate, a first plurality of FET sensors and a second plurality of FET sensors. Each of the FET sensors includes a channel region between a source and a drain region in the semiconductor substrate and underlying a gate structure disposed on a first side of the channel region, and a dielectric layer disposed on a second side of the channel region opposite from the first side of the channel region. A first plurality of capture reagents is coupled to the dielectric layer over the channel region of the first plurality of FET sensors, and a second plurality of capture reagents is coupled to the dielectric layer over the channel region of the second plurality of FET sensors. The second plurality of capture reagents is different from the first plurality of capture reagents.
    Type: Application
    Filed: April 10, 2023
    Publication date: September 14, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ching-Hui LIN, Chun-Ren CHENG, Shih-Fen HUANG, Fu-Chun HUANG