Patents by Inventor Shih-Guo Shen

Shih-Guo Shen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11935836
    Abstract: A semiconductor device includes a bridge and a first integrated circuit. The bridge is free of active devices and includes a first conductive connector. The first integrated circuit includes a substrate and a second conductive connector disposed in a first dielectric layer over the substrate. The second conductive connector is directly bonded to the first conductive connector. The second conductive connector includes conductive pads and first conductive vias and a second conductive via between the conductive pads. The second conductive via is not overlapped with the first conductive vias while the first conductive vias are overlapped with one another. A vertical distance between the second conductive via and the first conductive connector is larger than a vertical distance between each of the first conductive vias and the first conductive connector, and a sidewall of the first dielectric layer is substantially flush with a sidewall of the substrate.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hung Lin, An-Jhih Su, Der-Chyang Yeh, Shih-Guo Shen, Chia-Nan Yuan, Ming-Shih Yeh
  • Publication number: 20220384350
    Abstract: A semiconductor device includes a bridge and a first integrated circuit. The bridge is free of active devices and includes a first conductive connector. The first integrated circuit includes a substrate and a second conductive connector disposed in a first dielectric layer over the substrate. The second conductive connector is directly bonded to the first conductive connector. The second conductive connector includes conductive pads and first conductive vias and a second conductive via between the conductive pads. The second conductive via is not overlapped with the first conductive vias while the first conductive vias are overlapped with one another. A vertical distance between the second conductive via and the first conductive connector is larger than a vertical distance between each of the first conductive vias and the first conductive connector, and a sidewall of the first dielectric layer is substantially flush with a sidewall of the substrate.
    Type: Application
    Filed: August 9, 2022
    Publication date: December 1, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hung Lin, An-Jhih Su, Der-Chyang Yeh, Shih-Guo Shen, Chia-Nan Yuan, Ming-Shih Yeh
  • Patent number: 11450612
    Abstract: A semiconductor device includes a bridge and a plurality of dies. The bridge is free of active devices and includes a substrate, an interconnect structure, a redistribution layer structure and a plurality of conductive connectors. The interconnect structure includes at least one dielectric layer and a plurality of first conductive features in the at least one dielectric layer. The redistribution layer structure includes at least one polymer layer and a plurality of second conductive features in the at least one polymer layer, wherein a sidewall of the interconnect structure is substantially flush with a sidewall of the redistribution layer structure. The conductive connectors are electrically connected to one another by the redistribution layer structure and the interconnect structure. The bridge electrically connects the plurality of dies.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: September 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Hung Lin, An-Jhih Su, Der-Chyang Yeh, Shih-Guo Shen, Chia-Nan Yuan, Ming-Shih Yeh
  • Publication number: 20220013461
    Abstract: A semiconductor device includes a bridge and a plurality of dies. The bridge is free of active devices and includes a substrate, an interconnect structure, a redistribution layer structure and a plurality of conductive connectors. The interconnect structure includes at least one dielectric layer and a plurality of first conductive features in the at least one dielectric layer. The redistribution layer structure includes at least one polymer layer and a plurality of second conductive features in the at least one polymer layer, wherein a sidewall of the interconnect structure is substantially flush with a sidewall of the redistribution layer structure. The conductive connectors are electrically connected to one another by the redistribution layer structure and the interconnect structure. The bridge electrically connects the plurality of dies.
    Type: Application
    Filed: July 9, 2020
    Publication date: January 13, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Hung Lin, An-Jhih Su, Der-Chyang Yeh, Shih-Guo Shen, Chia-Nan Yuan, Ming-Shih Yeh
  • Publication number: 20210281037
    Abstract: In an embodiment, a device includes: a first reflective structure including first doped layers of a semiconductive material, alternating ones of the first doped layers being doped with a p-type dopant; a second reflective structure including second doped layers of the semiconductive material, alternating ones of the second doped layers being doped with a n-type dopant; an emitting semiconductor region disposed between the first reflective structure and the second reflective structure; a contact pad on the second reflective structure, a work function of the contact pad being less than a work function of the second reflective structure; a bonding layer on the contact pad, a work function of the bonding layer being greater than the work function of the second reflective structure; and a conductive connector on the bonding layer.
    Type: Application
    Filed: April 26, 2021
    Publication date: September 9, 2021
    Inventors: Chen-Hua Yu, An-Jhih Su, Chia-Nan Yuan, Shih-Guo Shen, Der-Chyang Yeh, Yu-Hung Lin, Ming Shih Yeh
  • Patent number: 10992100
    Abstract: In an embodiment, a device includes: a first reflective structure including first doped layers of a semiconductive material, alternating ones of the first doped layers being doped with a p-type dopant; a second reflective structure including second doped layers of the semiconductive material, alternating ones of the second doped layers being doped with a n-type dopant; an emitting semiconductor region disposed between the first reflective structure and the second reflective structure; a contact pad on the second reflective structure, a work function of the contact pad being less than a work function of the second reflective structure; a bonding layer on the contact pad, a work function of the bonding layer being greater than the work function of the second reflective structure; and a conductive connector on the bonding layer.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: April 27, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, An-Jhih Su, Chia-Nan Yuan, Shih-Guo Shen, Der-Chyang Yeh, Yu-Hung Lin, Ming Shih Yeh
  • Publication number: 20200014169
    Abstract: In an embodiment, a device includes: a first reflective structure including first doped layers of a semiconductive material, alternating ones of the first doped layers being doped with a p-type dopant; a second reflective structure including second doped layers of the semiconductive material, alternating ones of the second doped layers being doped with a n-type dopant; an emitting semiconductor region disposed between the first reflective structure and the second reflective structure; a contact pad on the second reflective structure, a work function of the contact pad being less than a work function of the second reflective structure; a bonding layer on the contact pad, a work function of the bonding layer being greater than the work function of the second reflective structure; and a conductive connector on the bonding layer.
    Type: Application
    Filed: December 3, 2018
    Publication date: January 9, 2020
    Inventors: Chen-Hua Yu, An-Jhih Su, Chia-Nan Yuan, Shih-Guo Shen, Der-Chyang Yeh, Yu-Hung Lin, Ming Shih Yeh
  • Patent number: 9805815
    Abstract: A bit cell includes a program device comprising a first source/drain region and a second source/drain region separated by a first channel. The first source/drain region, the second source/drain region, and the first channel are positioned along a first direction. The bit cell also includes an electrical fuse (eFuse) having a conduction path along the first direction. A conductive element is electrically connected with the first source/drain region and one end of the eFuse.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: October 31, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Hung Chen, Liang Chuan Chang, Wei-Fen Pai, Bai-Mei Chang, Shao-Yu Chou, Ren-Fen Tsui, Dian-Sheg Yu, Shih-Guo Shen
  • Patent number: 9391016
    Abstract: The present disclosure relates to an integrated chip having a MIM (metal-insulator-metal) capacitor and an associated method of formation. In some embodiments, the integrated chip has a MIM capacitor disposed within a capacitor inter-level dielectric (ILD) layer. An under-metal layer is disposed below the capacitor ILD layer and includes one or more metal structures located under the MIM capacitor. A plurality of vias vertically extend through the capacitor ILD layer and the MIM capacitor. The plurality of vias provide for an electrical connection to the MIM capacitor and to the under-metal layer. By using the plurality of vias to provide for vertical connections to the MIM capacitor and to the under-metal layer, the integrated chip does not use vias that are specifically designated for the MIM capacitor, thereby decreasing the complexity of the integrated chip fabrication.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: July 12, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Guo Shen, Wei-Min Tseng, Chien-Chung Wang, Huey-Chi Chu, Wen-Chuan Chiang
  • Patent number: 9368392
    Abstract: The present disclosure relates to a MIM (metal-insulator-metal) capacitor, and an associated method of formation. In some embodiments, the MIM capacitor includes a first electrode having a capacitor bottom metal layer disposed over a dielectric buffer layer located over an under-metal layer. A capacitor dielectric layer is disposed onto and in direct contact with the capacitor bottom metal layer. A second electrode having a top capacitor metal layer is disposed onto and in direct contact with the capacitor dielectric layer. A capacitor inter-level dielectric (ILD) layer is disposed over the top capacitor metal layer, and a substantially planar etch stop layer disposed over the capacitor ILD layer. The capacitor's simple stack provides for a small step size that prevents topography related issues, while the dielectric buffer layer removes design restrictions on the lower metal layer.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: June 14, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Min Tseng, Shih-Guo Shen, Chien-Chung Wang, Huey-Chi Chu, Wen-Chuan Chiang
  • Patent number: 9219110
    Abstract: The present disclosure relates to a MIM capacitor, and an associated method of formation. In some embodiments, the MIM capacitor has a first electrode having a bottom capacitor metal layer disposed over a semiconductor substrate. A second electrode having a middle capacitor metal layer overlies the bottom capacitor metal layer. A third electrode having a top capacitor metal layer has a stepped structure is laterally and vertically separated from the middle capacitor metal layer by a capacitor dielectric layer continuously extends from a first position between the bottom capacitor metal layer and the middle capacitor metal layer, to a second position between the middle capacitor metal layer and the top capacitor metal layer. The capacitor dielectric layer allows for the MIM capacitor to have a structure that improves fabrication of the capacitor.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: December 22, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chien-Chung Wang, Wei-Min Tseng, Shih-Guo Shen, Huey-Chi Chu, Wen-Chuan Chiang
  • Publication number: 20150295019
    Abstract: The present disclosure relates to a MIM capacitor, and an associated method of formation. In some embodiments, the MIM capacitor has a first electrode having a bottom capacitor metal layer disposed over a semiconductor substrate. A second electrode having a middle capacitor metal layer overlies the bottom capacitor metal layer. A third electrode having a top capacitor metal layer has a stepped structure is laterally and vertically separated from the middle capacitor metal layer by a capacitor dielectric layer continuously extends from a first position between the bottom capacitor metal layer and the middle capacitor metal layer, to a second position between the middle capacitor metal layer and the top capacitor metal layer. The capacitor dielectric layer allows for the MIM capacitor to have a structure that improves fabrication of the capacitor.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 15, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chien-Chung Wang, Wei-Min Tseng, Shih-Guo Shen, Huey-Chi Chu, Wen-Chuan Chiang
  • Publication number: 20150294936
    Abstract: The present disclosure relates to an integrated chip having a MIM (metal-insulator-metal) capacitor and an associated method of formation. In some embodiments, the integrated chip has a MIM capacitor disposed within a capacitor inter-level dielectric (ILD) layer. An under-metal layer is disposed below the capacitor ILD layer and includes one or more metal structures located under the MIM capacitor. A plurality of vias vertically extend through the capacitor ILD layer and the MIM capacitor. The plurality of vias provide for an electrical connection to the MIM capacitor and to the under-metal layer. By using the plurality of vias to provide for vertical connections to the MIM capacitor and to the under-metal layer, the integrated chip does not use vias that are specifically designated for the MIM capacitor, thereby decreasing the complexity of the integrated chip fabrication.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 15, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Guo Shen, Wei-Min Tseng, Chien-Chung Wang, Huey-Chi Chu, Wen-Chuan Chiang
  • Publication number: 20150295020
    Abstract: The present disclosure relates to a MIM (metal-insulator-metal) capacitor, and an associated method of formation. In some embodiments, the MIM capacitor includes a first electrode having a capacitor bottom metal layer disposed over a dielectric buffer layer located over an under-metal layer. A capacitor dielectric layer is disposed onto and in direct contact with the capacitor bottom metal layer. A second electrode having a top capacitor metal layer is disposed onto and in direct contact with the capacitor dielectric layer. A capacitor inter-level dielectric (ILD) layer is disposed over the top capacitor metal layer, and a substantially planar etch stop layer disposed over the capacitor ILD layer. The capacitor's simple stack provides for a small step size that prevents topography related issues, while the dielectric buffer layer removes design restrictions on the lower metal layer.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 15, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Min Tseng, Shih-Guo Shen, Chien-Chung Wang, Huey-Chi Chu, Wen-Chuan Chiang
  • Publication number: 20090098714
    Abstract: GaN layer on semiconductor substrate is grown by using GaN nanorod buffer layer. Firstly, semiconductor substrate is cleaned and thermally degassed to remove the contaminant in the growth chamber. After the above step, the GaN nanorods layer is grown under the N-rich condition. Then, GaN epilayer is overgrown on the GaN nanorods layer under the Ga-rich condition for forming Group of III-Nitrides semiconductor layer on the semiconductor substrate.
    Type: Application
    Filed: January 23, 2008
    Publication date: April 16, 2009
    Applicant: National Chiao Tung University
    Inventors: Chun-Yen Chang, Tsung-Hsi Yang, Shih-Guo Shen