Patents by Inventor Shih-Hao Kuo

Shih-Hao Kuo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250063789
    Abstract: A method for forming a semiconductor device structure includes forming nanostructures over a substrate. The method also includes forming a gate structure wrapped around the nanostructures. The method also includes forming source/drain epitaxial structures over opposite sides of the nanostructures. The method also includes forming a first interlayer dielectric structure over the source/drain epitaxial structures. The method also includes removing the first interlayer dielectric structure. The method also includes forming a recess in the source/drain epitaxial structures. The method also includes forming a silicide structure in the recess. The method also includes forming a second interlayer dielectric structure over the silicide structure.
    Type: Application
    Filed: August 15, 2023
    Publication date: February 20, 2025
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fu-Hsiang SU, Ping-Chun WU, Je-Wei HSU, Hong-Chih CHEN, Chia-Hao KUO, Shih-Hsun CHANG
  • Publication number: 20250062158
    Abstract: A method for forming a semiconductor device structure is provided. The method includes providing a substrate having a base and a fin over the base. The method includes forming a first gate stack wrapped around the fin. The method includes forming a first gate spacer over a first sidewall of the first gate stack. The method includes partially removing the fin, which is not covered by the first gate stack and the first gate spacer. The method includes removing a first upper portion of the first gate stack to expose a second upper portion of the first gate spacer. The method includes removing the second upper portion of the first gate spacer. The method includes removing a first lower portion of the first gate stack and the fin originally wrapped by the first gate stack. The method includes forming a dielectric channel-cut structure in the trench.
    Type: Application
    Filed: August 14, 2023
    Publication date: February 20, 2025
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Li CHIU, Chia-Hao Kuo, Fu-Hsiang Su, Shih-Hsun Chang
  • Publication number: 20250052966
    Abstract: A method of forming a semiconductor package is provided. The method includes forming a micro lens recessed from the top surface of a substrate. A concave area is formed between the surface of the micro lens and the top surface of the substrate. The method includes depositing a first dielectric material that fills a portion of the concave area using a spin coating process. The method includes depositing a second dielectric material that fills the remainder of the concave area and covers the top surface of the substrate using a chemical vapor deposition process. The method includes planarizing the second dielectric material. The method includes forming a bonding layer on the planarized second dielectric material and over the top surface of the substrate. The method includes bonding a semiconductor wafer to the substrate via the bonding layer.
    Type: Application
    Filed: August 10, 2023
    Publication date: February 13, 2025
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Yi HUANG, Yu-Hao KUO, Chiao-Chun CHANG, Jui-Hsuan TSAI, Yu-Hung LIN, Shih-Peng TAI, Jih-Churng TWU, Chen-Hua YU
  • Publication number: 20250048704
    Abstract: A semiconductor device includes a semiconductor substrate, a plurality of metal portions, a plurality of nanosheet structures, and a plurality of isolation structures. The metal portions are disposed on the semiconductor substrate and are spaced apart from each other. The nanosheet structures are surrounded by the metal portions such that the nanosheet structures are spaced apart from each other. The isolation structures are disposed on the semiconductor substrate such that two adjacent ones of the metal portions are isolated from each other by a corresponding one of the isolation structures. Each of the isolation structures includes a first dielectric layer and an air gap surrounded by the first dielectric layer.
    Type: Application
    Filed: August 1, 2023
    Publication date: February 6, 2025
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hong-Chih CHEN, Fu-Hsiang SU, Shih-Hsun CHANG, Chia-Hao KUO, Chih-Ting YEH
  • Publication number: 20250038073
    Abstract: A package structure and a method for forming the same are provided. The package structure includes a first package structure and a second package structure. The first package structure includes a first device formed over a first substrate. The first device includes a first conductive plug connected to a through substrate via (TSV) structure formed in the first substrate. A buffer layer surrounds the first substrate. A first bonding layer is formed over the first substrate and the buffer layer. The second package structure includes a second device formed over a second substrate. A second bonding layer is formed over the second device. A hybrid bonding structure is between the first package structure and the second package structure by bonding the first bonding layer to the second bonding layer.
    Type: Application
    Filed: July 27, 2023
    Publication date: January 30, 2025
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ke-Han SHEN, Chih-Yuan CHEN, Jiung WU, Hung-Yi Kuo, Chung-Ju LEE, Tung-He CHOU, Ji CUI, Kuo-Chung YEE, Chen-Hua YU, Cheng-Chieh HSIEH, Yu-Jen LIEN, Yian-Liang KUO, Shih-Hao TSENG, Jen Yu WANG, Tzu-Chieh Chou
  • Patent number: 12210296
    Abstract: In a method of cleaning a lithography system, during idle mode, a stream of air is directed, through a first opening, into a chamber of a wafer table of an EUV lithography system. One or more particles is extracted by the directed stream of air from surfaces of one or more wafer chucks in the chamber of the wafer table. The stream of air and the extracted one or more particle are drawn, through a second opening, out of the chamber of the wafer table.
    Type: Grant
    Filed: March 7, 2024
    Date of Patent: January 28, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Yu Tu, Shao-Hua Wang, Yen-Hao Liu, Chueh-Chi Kuo, Li-Jui Chen, Heng-Hsin Liu
  • Publication number: 20250031434
    Abstract: A method includes bonding a first semiconductor die and a second semiconductor die to a substrate, where a gap is disposed between a first sidewall of the first semiconductor die and a second sidewall of the second semiconductor die, performing a plasma treatment to dope top surfaces and sidewalls of each of the first semiconductor die and the second semiconductor die with a first dopant, where a concentration of the first dopant in the first sidewall decreases in a vertical direction from a top surface of the first semiconductor die towards a bottom surface of the first semiconductor die, and a concentration of the first dopant in the second sidewall decreases in a vertical direction from a top surface of the second semiconductor die towards a bottom surface of the second semiconductor die, and filling the gap with a spin-on dielectric material.
    Type: Application
    Filed: July 17, 2023
    Publication date: January 23, 2025
    Inventors: Yu-Hung Lin, Jih-Churng Twu, Su-Chun Yang, Shih-Peng Tai, Yu-Hao Kuo
  • Publication number: 20240404893
    Abstract: Embodiments of the present disclosure generally relate to lithography systems. In one embodiment, a method is disclosed. The method includes measuring a location of a die pad of a die placed on a substrate and determining a die pad shift between an expected location of the die pad and the measured location of the die pad. The method also includes using the determined die pad shift and an expected via location to generate a shifted via location for a via electrically connecting to the die pad. The method further includes patterning the via at the shifted via location with a maskless lithography tool and utilizing a physical mask with a mask-based lithography tool to pattern a redistribution layer (RDL) pad electrically connected to the via patterned at the shifted via location with the maskless lithography tool.
    Type: Application
    Filed: May 29, 2024
    Publication date: December 5, 2024
    Inventors: Shih-Hao KUO, Shih-Hsien LEE, Thomas L. LAIDIG, Jang Fung CHEN, Min Sheng SUEN
  • Patent number: 12032284
    Abstract: Exemplary methods of packaging a substrate may include rotationally aligning a substrate to a predetermined angular position. The methods may include transferring the substrate to a metrology station. The methods may include measuring a topology of the substrate at the metrology station. The methods may include applying a first chucking force to the substrate to flatten the substrate. The methods may include generating a mapping of a die pattern on an exposed surface of the substrate. The methods may include transferring the substrate to a printing station. The methods may include applying a second chucking force to the substrate to flatten the substrate against a surface of the printing station. The methods may include adjusting a printing pattern based on the mapping of the die pattern. The methods may include printing the printing pattern on the exposed surface of the substrate.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: July 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Shih-Hao Kuo, Hsiu-Jen Wang, Ulrich Mueller, Jang Fung Chen
  • Publication number: 20240027896
    Abstract: Exemplary methods of packaging a substrate may include rotationally aligning a substrate to a predetermined angular position. The methods may include transferring the substrate to a metrology station. The methods may include measuring a topology of the substrate at the metrology station. The methods may include applying a first chucking force to the substrate to flatten the substrate. The methods may include generating a mapping of a die pattern on an exposed surface of the substrate. The methods may include transferring the substrate to a printing station. The methods may include applying a second chucking force to the substrate to flatten the substrate against a surface of the printing station. The methods may include adjusting a printing pattern based on the mapping of the die pattern. The methods may include printing the printing pattern on the exposed surface of the substrate.
    Type: Application
    Filed: July 25, 2022
    Publication date: January 25, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Shih-Hao Kuo, Hsiu-Jen Wang, Ulrich Mueller, Jang Fung Chen
  • Publication number: 20230288822
    Abstract: Actual physical locations of dies on a substrate package may be identified without using a full metrology scan of the substrate. Instead, one or more cameras may be used to efficiently locate the approximate location of any of the alignment features based on their expected positioning in the design file for the packages are substrate. The cameras may then be moved to locations where alignment features should be, and images may be captured to determine the actual location of the alignment feature. These actual locations of the alignment features may then be used to identify coordinates for the dies, as well as rotations and/or varying heights of the dies on the packages. A difference between the expected location from the design file and the actual physical location may be used to adjust instructions for the digital lithography system to compensate for the misalignment of the dies.
    Type: Application
    Filed: March 12, 2022
    Publication date: September 14, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Ulrich Mueller, Hsiu-Jen Wang, Shih-Hao Kuo, Jang Fung Chen
  • Publication number: 20230260815
    Abstract: The present disclosure provides a multi-substrate handling system having an alignment apparatus capable of positioning each of a set of substrates in predetermined orientations for transfer. A buffer chamber is configured to receive and condition the set of substrates which are disposed on a substrate carrier. A first transfer assembly is configured to transfer the set of substrates to and from the buffer chamber and is capable of transferring each of the set of substrates from the alignment apparatus to the carrier in the buffer chamber. The carrier includes a plurality of modules capable of securing the set of substrates. The system includes a second transfer assembly having at least two robots configured to transfer the carrier of the set of substrates between the buffer chamber and a process chamber. The process chamber is capable of processing the set of substrates using different process parameters for each substrate.
    Type: Application
    Filed: June 16, 2021
    Publication date: August 17, 2023
    Inventors: Hsiu-jen WANG, Sin-Yi JIANG, Neng-rui DONG, Shih-Hao KUO, Chia-Hung KAO, Bang-Yu LIU, Hsu-Ming HSU
  • Patent number: 11263785
    Abstract: An object detection method, an electronic apparatus and an object detection system are provided. The method is adapted to the electronic apparatus and includes the following steps. A first image is obtained. A geometric transformation operation is performed on the first image to obtain at least one second image. The first image and the at least one second image are combined to generate a combination image. The combination image including the first image and the at least one second image is inputted into a trained deep learning model to detect a target object.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: March 1, 2022
    Assignee: Wistron Corporation
    Inventors: Shih-Hao Kuo, Hao-Gong Chou, Tai Chung
  • Patent number: 11145252
    Abstract: A light-emitting diode apparatus and a control method of the light-emitting diode apparatus are provided. The control method includes: applying a pre-reset voltage to a control terminal of a driving transistor of the light-emitting diode apparatus in a pre-resetting stage to pre-reset the control terminal of the driving transistor; resetting the control terminal of the driving transistor of the light-emitting diode apparatus by using a reset voltage source in a first resetting stage; compensating the control terminal of the driving transistor to a compensation voltage in a compensation stage; and providing, by the driving transistor, a driving current in a light emission stage to drive a light-emitting diode of the light-emitting diode apparatus to emit light.
    Type: Grant
    Filed: May 26, 2019
    Date of Patent: October 12, 2021
    Assignee: Au Optronics Corporation
    Inventors: Sen-Chuan Hung, Shih-Hao Kuo
  • Publication number: 20210150764
    Abstract: An object detection method, an electronic apparatus and an object detection system are provided. The method is adapted to the electronic apparatus and includes the following steps. A first image is obtained. A geometric transformation operation is performed on the first image to obtain at least one second image. The first image and the at least one second image are combined to generate a combination image. The combination image including the first image and the at least one second image is inputted into a trained deep learning model to detect a target object.
    Type: Application
    Filed: February 18, 2020
    Publication date: May 20, 2021
    Applicant: Wistron Corporation
    Inventors: Shih-Hao Kuo, Hao-Gong Chou, Tai Chung
  • Patent number: 10970557
    Abstract: A posture determination method applicable to an electronic system including an image capturing device is provided. The image capturing device is set up corresponding to a target. The posture determination method includes: acquiring a plurality of consecutive images captured by the image capturing device; performing a motion detection on the consecutive images; determining whether an image content of the consecutive images is static after a movement according to a detection result of the motion detection; and determining a posture of the target when the image content is static after the movement. In addition, the electronic system and a non-transitory computer-readable recording medium using the method are also provided.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: April 6, 2021
    Assignee: Wistron Corporation
    Inventor: Shih-Hao Kuo
  • Patent number: 10948834
    Abstract: Embodiments described provide dynamic imaging systems that compensates for pattern defects resulting from distortion caused by warpage of the substrate. The methods and apparatus described are useful to create compensated exposure patterns. The dynamic imaging system includes an inspection system configured to provide 3D profile measurements and die shift measurements of the first substrate to the interface configured to provide compensated pattern data to the digital lithography system configured to receive the compensated pattern data from the interface and expose the photoresist with a compensated pattern.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: March 16, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Ching-Chang Chen, Chien-Hua Lai, Wei-Chung Chen, Shih-Hao Kuo, Hsiu-Jen Wang
  • Patent number: 10928743
    Abstract: Embodiments herein beneficially enable simultaneous processing of a plurality of substrates in a digital direct write lithography processing system. In one embodiment a method of processing a plurality of substrate includes positioning a plurality of substrates on a substrate carrier of a processing system, positioning the substrate carrier under the plurality of optical modules, independently leveling each of the plurality of substrates, determining offset information for each of the plurality of substrates, generating patterning instructions based on the offset information for each of the plurality of substrates, and patterning each of the plurality of substrates using the plurality of optical modules. The processing system comprises a base, a motion stage disposed on the base, the substrate carrier disposed on the motion stage, a bridge disposed above a surface of the base and separated therefrom, and a plurality of optical modules disposed on the bridge.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: February 23, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Chien-Hua Lai, Chia-Hung Kao, Hsiu-Jen Wang, Shih-Hao Kuo, Yi-Sheng Liu, Shih-Hsien Lee, Ching-Chang Chen, Tsu-Hui Yang
  • Publication number: 20200333711
    Abstract: Embodiments described provide dynamic imaging systems that compensates for pattern defects resulting from distortion caused by warpage of the substrate. The methods and apparatus described are useful to create compensated exposure patterns. The dynamic imaging system includes an inspection system configured to provide 3D profile measurements and die shift measurements of the first substrate to the interface configured to provide compensated pattern data to the digital lithography system configured to receive the compensated pattern data from the interface and expose the photoresist with a compensated pattern.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 22, 2020
    Inventors: Ching-Chang CHEN, Chien-Hua LAI, Wei-Chung CHEN, Shih-Hao KUO, Hsiu-Jen WANG
  • Patent number: 10719018
    Abstract: Embodiments described provide dynamic imaging systems that compensates for pattern defects resulting from distortion caused by warpage of the substrate. The methods and apparatus described are useful to create compensated exposure patterns. The dynamic imaging system includes an inspection system configured to provide 3D profile measurements and die shift measurements of the first substrate to the interface configured to provide compensated pattern data to the digital lithography system configured to receive the compensated pattern data from the interface and expose the photoresist with a compensated pattern.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: July 21, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Ching-Chang Chen, Chien-Hua Lai, Wei-Chung Chen, Shih-Hao Kuo, Hsiu-Jen Wang