Patents by Inventor Shih-Hsiang Lo
Shih-Hsiang Lo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12271107Abstract: A method for mask data synthesis and mask making includes calibrating an optical proximity correction (OPC) model by adjusting a plurality of parameters including a first parameter and a second parameter, wherein the first parameter indicates a long-range effect caused by an electron-beam lithography tool for making a mask used to manufacture a structure, and the second parameter indicates a geometric feature of a structure or a manufacturing process to make the structure, generating a device layout, calculating a first grid pattern density map of the device layout, generating a long-range correction map, at least based on the calibrated OPC model and the first grid pattern density map of the device layout, and performing an OPC to generate a corrected mask layout, at least based on the generated long-range correction map and the calibrated OPC model.Type: GrantFiled: February 29, 2024Date of Patent: April 8, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Hsu-Ting Huang, Shih-Hsiang Lo, Ru-Gun Liu
-
Publication number: 20250110307Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.Type: ApplicationFiled: December 12, 2024Publication date: April 3, 2025Inventors: Chao-Chang HU, Chih-Wei WENG, Chia-Che WU, Chien-Yu KAO, Hsiao-Hsin HU, He-Ling CHANG, Chao-Hsi WANG, Chen-Hsien FAN, Che-Wei CHANG, Mao-Gen JIAN, Sung-Mao TSAI, Wei-Jhe SHEN, Yung-Ping YANG, Sin-Hong LIN, Tzu-Yu CHANG, Sin-Jhong SONG, Shang-Yu HSU, Meng-Ting LIN, Shih-Wei HUNG, Yu-Huai LIAO, Mao-Kuo HSU, Hsueh-Ju LU, Ching-Chieh HUANG, Chih-Wen CHIANG, Yu-Chiao LO, Ying-Jen WANG, Shu-Shan CHEN, Che-Hsiang CHIU
-
Patent number: 12259110Abstract: The present disclosure provides an optical packaging structure and a backlight module with the optical packaging structure. The optical packaging structure includes a light-emitting chip, a packaging layer, a fluorescent layer, a lens structure, and a reflecting layer. The light-emitting chip includes a light-emitting surface, a connecting surface, and a side surface. The packaging layer covers the light-emitting surface and the first side surface. The connecting surface is exposed from the packaging layer. The fluorescent layer is disposed on the packaging layer, and covers on the light-emitting surface and the first side surface. The lens structure is disposed on a top surface of the fluorescent layer. A surface of the lens structure is recessed towards the light-emitting chip to form a curved surface. The reflecting layer is disposed on the curved surface.Type: GrantFiled: August 19, 2024Date of Patent: March 25, 2025Assignee: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.Inventors: Chuang-Yu Hsieh, Hsin-Ting Hung, Hao-Hsiang Hsieh, Shih-Hsiang Lo
-
Patent number: 12204163Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.Type: GrantFiled: February 5, 2024Date of Patent: January 21, 2025Assignee: TDK TAIWAN CORP.Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
-
Publication number: 20240201579Abstract: A method for mask data synthesis and mask making includes calibrating an optical proximity correction (OPC) model by adjusting a plurality of parameters including a first parameter and a second parameter, wherein the first parameter indicates a long-range effect caused by an electron-beam lithography tool for making a mask used to manufacture a structure, and the second parameter indicates a geometric feature of a structure or a manufacturing process to make the structure, generating a device layout, calculating a first grid pattern density map of the device layout, generating a long-range correction map, at least based on the calibrated OPC model and the first grid pattern density map of the device layout, and performing an OPC to generate a corrected mask layout, at least based on the generated long-range correction map and the calibrated OPC model.Type: ApplicationFiled: February 29, 2024Publication date: June 20, 2024Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Hsu-Ting HUANG, Shih-Hsiang LO, Ru-Gun LIU
-
Patent number: 11947254Abstract: A method for mask data synthesis and mask making includes calibrating an optical proximity correction (OPC) model by adjusting a plurality of parameters including a first parameter and a second parameter, wherein the first parameter indicates a long-range effect caused by an electron-beam lithography tool for making a mask used to manufacture a structure, and the second parameter indicates a geometric feature of a structure or a manufacturing process to make the structure, generating a device layout, calculating a first grid pattern density map of the device layout, generating a long-range correction map, at least based on the calibrated OPC model and the first grid pattern density map of the device layout, and performing an OPC to generate a corrected mask layout, at least based on the generated long-range correction map and the calibrated OPC model.Type: GrantFiled: August 1, 2022Date of Patent: April 2, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Hsu-Ting Huang, Shih-Hsiang Lo, Ru-Gun Liu
-
Publication number: 20240061344Abstract: A method for manufacturing a lithographic mask for an integrated circuit includes performing an optical proximity correction (OPC) process to an integrated circuit mask layout to produce a corrected mask layout. The method further includes performing an inverse lithographic technology (ILT) process to the corrected mask layout to enhance the corrected mask layout to produce an OPC-ILT-enhanced mask layout. The method also includes performing an inverse lithographic technology (ILT) process to the corrected mask layout to enhance the corrected mask layout to produce an OPC-ILT-enhanced mask layout.Type: ApplicationFiled: November 1, 2023Publication date: February 22, 2024Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Hsu-Ting HUANG, Tung-Chin WU, Shih-Hsiang LO, Chih-Ming LAI, Jue-Chin YU, Ru-Gun LIU, Chin-Hsiang LIN
-
Patent number: 11841619Abstract: A method for manufacturing a lithographic mask for an integrated circuit includes performing an optical proximity correction (OPC) process to an integrated circuit mask layout to produce a corrected mask layout. The method further includes performing an inverse lithographic technology (ILT) process to the corrected mask layout to enhance the corrected mask layout to produce an OPC-ILT-enhanced mask layout. The method also includes performing an inverse lithographic technology (ILT) process to the corrected mask layout to enhance the corrected mask layout to produce an OPC-ILT-enhanced mask layout.Type: GrantFiled: August 16, 2021Date of Patent: December 12, 2023Assignee: TAIWAN SEMINCONDUTOR MANUFACTURING COMPANY, LTD.Inventors: Hsu-Ting Huang, Tung-Chin Wu, Shih-Hsiang Lo, Chih-Ming Lai, Jue-Chin Yu, Ru-Gun Liu, Chin-Hsiang Lin
-
Patent number: 11675958Abstract: In a method of optimizing a lithography model in a lithography simulation, a mask is formed in accordance with a given layout, a wafer is printed using the mask, a pattern formed on the printed wafer is measured, a wafer pattern is simulated using a wafer edge bias table and the given mask layout, a difference between the simulated wafer pattern and the measured pattern is obtained, and the wafer edge table is adjusted according to the difference.Type: GrantFiled: July 30, 2021Date of Patent: June 13, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Fu An Tien, Hsu-Ting Huang, Ru-Gun Liu, Shih-Hsiang Lo
-
Publication number: 20220373878Abstract: A method for mask data synthesis and mask making includes calibrating an optical proximity correction (OPC) model by adjusting a plurality of parameters including a first parameter and a second parameter, wherein the first parameter indicates a long-range effect caused by an electron-beam lithography tool for making a mask used to manufacture a structure, and the second parameter indicates a geometric feature of a structure or a manufacturing process to make the structure, generating a device layout, calculating a first grid pattern density map of the device layout, generating a long-range correction map, at least based on the calibrated OPC model and the first grid pattern density map of the device layout, and performing an OPC to generate a corrected mask layout, at least based on the generated long-range correction map and the calibrated OPC model.Type: ApplicationFiled: August 1, 2022Publication date: November 24, 2022Inventors: Hsu-Ting HUANG, Shih-Hsiang LO, Ru-Gun LIU
-
Patent number: 11415890Abstract: A method for mask data synthesis and mask making includes calibrating an optical proximity correction (OPC) model by adjusting a plurality of parameters including a first parameter and a second parameter, wherein the first parameter indicates a long-range effect caused by an electron-beam lithography tool for making a mask used to manufacture a structure, and the second parameter indicates a geometric feature of a structure or a manufacturing process to make the structure, generating a device layout, calculating a first grid pattern density map of the device layout, generating a long-range correction map, at least based on the calibrated OPC model and the first grid pattern density map of the device layout, and performing an OPC to generate a corrected mask layout, at least based on the generated long-range correction map and the calibrated OPC model.Type: GrantFiled: March 8, 2021Date of Patent: August 16, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Hsu-Ting Huang, Shih-Hsiang Lo, Ru-Gun Liu
-
Publication number: 20210373443Abstract: A method for manufacturing a lithographic mask for an integrated circuit includes performing an optical proximity correction (OPC) process to an integrated circuit mask layout to produce a corrected mask layout. The method further includes performing an inverse lithographic technology (ILT) process to the corrected mask layout to enhance the corrected mask layout to produce an OPC-ILT-enhanced mask layout. The method also includes performing an inverse lithographic technology (ILT) process to the corrected mask layout to enhance the corrected mask layout to produce an OPC-ILT-enhanced mask layout.Type: ApplicationFiled: August 16, 2021Publication date: December 2, 2021Inventors: Hsu-Ting HUANG, Tung-Chin WU, Shih-Hsiang LO, Chih-Ming LAI, Jue-Chin YU, Ru-Gun LIU, Chin-Hsiang LIN
-
Publication number: 20210357571Abstract: In a method of optimizing a lithography model in a lithography simulation, a mask is formed in accordance with a given layout, a wafer is printed using the mask, a pattern formed on the printed wafer is measured, a wafer pattern is simulated using a wafer edge bias table and the given mask layout, a difference between the simulated wafer pattern and the measured pattern is obtained, and the wafer edge table is adjusted according to the difference.Type: ApplicationFiled: July 30, 2021Publication date: November 18, 2021Inventors: Fu An TIEN, Hsu-Ting HUANG, Ru-Gun LIU, Shih-Hsiang LO
-
Patent number: 11092899Abstract: A method for manufacturing a lithographic mask for an integrated circuit includes performing an optical proximity correction (OPC) process to an integrated circuit mask layout to produce a corrected mask layout. The method further includes performing an inverse lithographic technology (ILT) process to the corrected mask layout to enhance the corrected mask layout to produce an OPC-ILT-enhanced mask layout. The method also includes performing an inverse lithographic technology (ILT) process to the corrected mask layout to enhance the corrected mask layout to produce an OPC-ILT-enhanced mask layout.Type: GrantFiled: November 27, 2019Date of Patent: August 17, 2021Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Hsu-Ting Huang, Tung-Chin Wu, Shih-Hsiang Lo, Chih-Ming Lai, Jue-Chin Yu, Ru-Gun Liu, Chin-Hsiang Lin
-
Patent number: 11080458Abstract: In a method of optimizing a lithography model in a lithography simulation, a mask is formed in accordance with a given layout, a wafer is printed using the mask, a pattern formed on the printed wafer is measured, a wafer pattern is simulated using a wafer edge bias table and the given mask layout, a difference between the simulated wafer pattern and the measured pattern is obtained, and the wafer edge table is adjusted according to the difference.Type: GrantFiled: September 26, 2019Date of Patent: August 3, 2021Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Fu An Tien, Hsu-Ting Huang, Ru-Gun Liu, Shih-Hsiang Lo
-
Patent number: 11061318Abstract: Provided is a method for fabricating a semiconductor device including generating an ideal image using measured contour data and fitted conventional model terms. The method further includes using the fitted conventional model terms and a mask layout to provide a conventional model aerial image. In some embodiments, the method further includes generating a plurality of mask raster images using the mask layout, where the plurality of mask raster images is generated for each measurement site of the measured contour data. In various embodiments, the method also include training a neural network to mimic the ideal image, where the generated ideal image provides a target output of the neural network, and where the conventional model aerial image and the plurality of mask raster images provide inputs to the neural network.Type: GrantFiled: January 21, 2020Date of Patent: July 13, 2021Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Shih-Hsiang Lo, Hsu-Ting Huang, Ru-Gun Liu
-
Publication number: 20210191254Abstract: A method for mask data synthesis and mask making includes calibrating an optical proximity correction (OPC) model by adjusting a plurality of parameters including a first parameter and a second parameter, wherein the first parameter indicates a long-range effect caused by an electron-beam lithography tool for making a mask used to manufacture a structure, and the second parameter indicates a geometric feature of a structure or a manufacturing process to make the structure, generating a device layout, calculating a first grid pattern density map of the device layout, generating a long-range correction map, at least based on the calibrated OPC model and the first grid pattern density map of the device layout, and performing an OPC to generate a corrected mask layout, at least based on the generated long-range correction map and the calibrated OPC model.Type: ApplicationFiled: March 8, 2021Publication date: June 24, 2021Inventors: Hsu-Ting HUANG, Shih-Hsiang LO, Ru-Gun LIU
-
Patent number: 10942443Abstract: A method for mask data synthesis and mask making includes calibrating an optical proximity correction (OPC) model by adjusting a plurality of parameters including a first parameter and a second parameter, wherein the first parameter indicates a long-range effect caused by an electron-beam lithography tool for making a mask used to manufacture a structure, and the second parameter indicates a geometric feature of a structure or a manufacturing process to make the structure, generating a device layout, calculating a first grid pattern density map of the device layout, generating a long-range correction map, at least based on the calibrated OPC model and the first grid pattern density map of the device layout, and performing an OPC to generate a corrected mask layout, at least based on the generated long-range correction map and the calibrated OPC model.Type: GrantFiled: September 27, 2018Date of Patent: March 9, 2021Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Hsu-Ting Huang, Shih-Hsiang Lo, Ru-Gun Liu
-
Publication number: 20200278604Abstract: Provided is a method for fabricating a semiconductor device including generating an ideal image using measured contour data and fitted conventional model terms. The method further includes using the fitted conventional model terms and a mask layout to provide a conventional model aerial image. In some embodiments, the method further includes generating a plurality of mask raster images using the mask layout, where the plurality of mask raster images is generated for each measurement site of the measured contour data. In various embodiments, the method also include training a neural network to mimic the ideal image, where the generated ideal image provides a target output of the neural network, and where the conventional model aerial image and the plurality of mask raster images provide inputs to the neural network.Type: ApplicationFiled: January 21, 2020Publication date: September 3, 2020Inventors: Shih-Hsiang LO, Hsu-Ting HUANG, Ru-Gun LIU
-
Publication number: 20200174380Abstract: A method for manufacturing a lithographic mask for an integrated circuit includes performing an optical proximity correction (OPC) process to an integrated circuit mask layout to produce a corrected mask layout. The method further includes performing an inverse lithographic technology (ILT) process to the corrected mask layout to enhance the corrected mask layout to produce an OPC-ILT-enhanced mask layout. The method also includes performing an inverse lithographic technology (ILT) process to the corrected mask layout to enhance the corrected mask layout to produce an OPC-ILT-enhanced mask layout.Type: ApplicationFiled: November 27, 2019Publication date: June 4, 2020Inventors: Hsu-Ting HUANG, Tung-Chin WU, Shih-Hsiang LO, Chih-Ming LAI, Jue-Chin YU, Ru-Gun LIU, Chin-Hsiang LIN