Patents by Inventor Shih-Hsiung Chan

Shih-Hsiung Chan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8866161
    Abstract: A structure of semiconductor device includes a first semiconductor layer; an intermediate layer on a surface of said first semiconductor layer; a second semiconductor layer on said intermediate layer, wherein said intermediate layer and said second semiconductor layer are integrated to a set of sub-structures; and a semiconductor light emitting device on said second semiconductor layer.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: October 21, 2014
    Assignee: Advanced Optoelectronics Technology, Inc.
    Inventors: Shih-Cheng Huang, Po-Min Tu, Ying-Chao Yeh, Wen-Yu Lin, Peng-Yi Wu, Shih-Hsiung Chan
  • Patent number: 8580590
    Abstract: A method for manufacturing a polychromatic light emitting diode device, comprising steps of providing an epitaxial substrate and forming a multiple semiconductor layer on the epitaxial substrate, wherein the multiple semiconductor layer comprises an n-type semiconductor layer, a p-type semiconductor layer and an active layer. The active layer emits light of a first wavelength. Thereafter a first wavelength conversion layer is formed on the multiple semiconductor layer. The first wavelength conversion layer is made of semiconductor and absorbs a portion of the light of a first wavelength and emits light of a second wavelength, wherein the second wavelength is longer than the first wavelength.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: November 12, 2013
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Shih-Cheng Huang, Po-Min Tu, Ying-Chao Yeh, Wen-Yu Lin, Peng-Yi Wu, Shih-Hsiung Chan
  • Patent number: 8581283
    Abstract: A photoelectric device having Group III nitride semiconductor includes a conductive layer, a metallic mirror layer located on the conductive layer, and a Group III nitride semiconductor layer located on the metallic mirror layer. The Group III nitride semiconductor layer defines a number of microstructures thereon. Each microstructure includes at least one angled face, and the angled face of each microstructure is a crystal face of the Group III nitride semiconductor layer.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: November 12, 2013
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Po-Min Tu, Shih-Cheng Huang, Wen-Yu Lin, Chih-Peng Hsu, Shih-Hsiung Chan
  • Publication number: 20130248922
    Abstract: A method for fabricating flip-chip semiconductor optoelectronic devices initially flip-chip bonds a semiconductor optoelectronic chip attached to an epitaxial substrate to a packaging substrate. The epitaxial substrate is then separated using lift-off technology.
    Type: Application
    Filed: May 20, 2013
    Publication date: September 26, 2013
    Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: Chester KUO, Lung-Hsin CHEN, Wen-Liang TSENG, Shih-Cheng HUANG, Po-Min TU, Ying-Chao YEH, Wen-Yu LIN, Peng-Yi WU, Shih-Hsiung CHAN
  • Patent number: 8535958
    Abstract: A method for fabricating a light emitting diode includes steps of: forming a light emitting structure of the light emitting diode on a substrate; arranging a photoresist layer on a first semiconductor layer of the light emitting structure; depositing a plurality of dielectric material structures on the first semiconductor layer through a plurality of voids of the photoresist layer; removing the photoresist layer to form a plurality of voids between the plurality of dielectric material structures; forming a plurality of metal material structures in the plurality of voids; and forming a reflective layer on the plurality of dielectric material structures and the plurality of metal material structures.
    Type: Grant
    Filed: August 26, 2012
    Date of Patent: September 17, 2013
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Tzu-Chien Hung, Chia-Hui Shen, Chih-Pang Ma, Chih-Peng Hsu, Shih-Hsiung Chan
  • Patent number: 8513696
    Abstract: A lateral thermal dissipation LED and a fabrication method thereof are provided. The lateral thermal dissipation LED utilizes a patterned metal layer and a lateral heat spreading layer to transfer heat out of the LED. The thermal dissipation efficiency of the LED is increased, and the lighting emitting efficiency is accordingly improved.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: August 20, 2013
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Po Min Tu, Shih Cheng Huang, Ying Chao Yeh, Wen Yu Lin, Peng Yi Wu, Shih Hsiung Chan
  • Patent number: 8470621
    Abstract: A method for fabricating flip-chip semiconductor optoelectronic devices initially flip-chip bonds a semiconductor optoelectronic chip attached to an epitaxial substrate to a packaging substrate. The epitaxial substrate is then separated using lift-off technology.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: June 25, 2013
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Chester Kuo, Lung Hsin Chen, Wen Liang Tseng, Shih Cheng Huang, Po Min Tu, Ying Chao Yeh, Wen Yu Lin, Peng Yi Wu, Shih Hsiung Chan
  • Publication number: 20120322183
    Abstract: A method for fabricating a light emitting diode includes steps of: forming a light emitting structure of the light emitting diode on a substrate; arranging a photoresist layer on a first semiconductor layer of the light emitting structure; depositing a plurality of dielectric material structures on the first semiconductor layer through a plurality of voids of the photoresist layer; removing the photoresist layer to form a plurality of voids between the plurality of dielectric material structures; forming a plurality of metal material structures in the plurality of voids; and forming a reflective layer on the plurality of dielectric material structures and the plurality of metal material structures.
    Type: Application
    Filed: August 26, 2012
    Publication date: December 20, 2012
    Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: TZU CHIEN HONG, CHIA HUI SHEN, CHIH PANG MA, CHIH PENG HSU, SHIH HSIUNG CHAN
  • Patent number: 8278645
    Abstract: A light emitting diode is disclosed, wherein the light emitting diode comprises a metal reflective layer for enhancing the light reflection efficiency inside the light emitting diode and reducing the resistance to avoid the power loss. In addition, the light emitting diode further comprises a buffer layer sandwiched between the metal reflective layer and a semiconductor layer, wherein the buffer layer is mixed with metal and non-metallic transparent material for reducing the stress between the semiconductor and the metal to decrease the possibility of the die cracking.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: October 2, 2012
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Tzu Chien Hong, Chia Hui Shen, Chih Pang Ma, Chih Peng Hsu, Shih Hsiung Chan
  • Patent number: 8242519
    Abstract: A package structure of a light emitting diode for a backlight comprises a long-wavelength LED die and a short-wavelength LED die. The lights emitted from the two LED dies are mixed with the light emitted from excited fluorescent powders for serving as the backlight of a liquid crystal display. A partition plate is disposed between the two LED dies for separating them from each other. The effective light output of the package structure is increased because each of the two LED dies cannot absorb the light from the other.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: August 14, 2012
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Jian Shihn Tsang, Wen Liang Tseng, Yao Te Tseng, Shih Hsiung Chan
  • Publication number: 20120190141
    Abstract: A method for manufacturing a polychromatic light emitting diode device, comprising steps of providing an epitaxial substrate and forming a multiple semiconductor layer on the epitaxial substrate, wherein the multiple semiconductor layer comprises an n-type semiconductor layer, a p-type semiconductor layer and an active layer. The active layer emits light of a first wavelength. Thereafter a first wavelength conversion layer is formed on the multiple semiconductor layer. The first wavelength conversion layer is made of semiconductor and absorbs a portion of the light of a first wavelength and emits light of a second wavelength, wherein the second wavelength is longer than the first wavelength.
    Type: Application
    Filed: March 30, 2012
    Publication date: July 26, 2012
    Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: SHIH-CHENG HUANG, PO-MIN TU, YING-CHAO YEH, WEN-YU LIN, PENG-YI WU, SHIH-HSIUNG CHAN
  • Patent number: 8217400
    Abstract: A wavelength conversion layer is formed on a surface of a light emitting device for transforming a portion of light emitted from the light emitting device into light of a different wavelength. The transformed light is mixed with the untransformed light, and thus the light emitting device can emit light having preferred CIE coordinates.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: July 10, 2012
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Shih Cheng Huang, Po Min Tu, Ying Chao Yeh, Wen Yu Lin, Peng Yi Wu, Shih Hsiung Chan
  • Patent number: 8202752
    Abstract: A semiconductor device fabrication method is disclosed. A buffer layer is provided and a first semiconductor layer is formed on the buffer layer. Next, a first intermediate layer is formed on the first semiconductor layer by dopant with high concentration during an epitaxial process. A second semiconductor layer is overlaid on the first intermediate layer. A semiconductor light emitting device is grown on the second semiconductor layer. The formation of the intermediate layer and the second semiconductor layer is a set of steps.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: June 19, 2012
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Shih Cheng Huang, Po Min Tu, Ying Chao Yeh, Wen Yu Lin, Peng Yi Wu, Shih Hsiung Chan
  • Publication number: 20120080715
    Abstract: A structure of semiconductor device includes a first semiconductor layer; an intermediate layer on a surface of said first semiconductor layer; a second semiconductor layer on said intermediate layer, wherein said intermediate layer and said second semiconductor layer are integrated to a set of sub-structures; and a semiconductor light emitting device on said second semiconductor layer.
    Type: Application
    Filed: December 8, 2011
    Publication date: April 5, 2012
    Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: SHIH CHENG HUANG, PO MIN TU, YING CHAO YEH, WEN YU LIN, PENG YI WU, SHIH HSIUNG CHAN
  • Patent number: 8148246
    Abstract: A method for separating a semiconductor from a substrate is disclosed. The method comprises the following steps: forming a plurality of columns on a substrate; epitaxially growing a semiconductor on the plurality of columns; and injecting etching liquid into the void among the plurality of columns so as to separate the semiconductor from the substrate. The method of this invention can enhance the etching efficiency of separating the semiconductor from the substrate and reduce the fabrication cost because the etching area is increased due to the void among the plurality of columns. In addition, the method will not confine the material of the above-mentioned substrate.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: April 3, 2012
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Wen Yu Lin, Shih Cheng Huang, Po Min Tu, Chih Peng Hsu, Shih Hsiung Chan
  • Patent number: 8093082
    Abstract: A method of fabricating a photoelectric device of Group III nitride semiconductor, where the method comprises the steps of: forming a first Group III nitride semiconductor layer on a surface of a temporary substrate; patterning the first Group III nitride semiconductor layer using photolithography and etching processes; forming a second Group III nitride semiconductor layer on the patterned first Group III nitride semiconductor layer; forming a conductive layer on the second Group III nitride semiconductor layer; and releasing the temporary substrate by removing the first Group III nitride semiconductor layer to obtain a composite of the second Group III nitride semiconductor layer and the conductive layer.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: January 10, 2012
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Shih Cheng Huang, Po Min Tu, Ying Chao Yeh, Wen Yu Lin, Peng Yi Wu, Chih Peng Hsu, Shih Hsiung Chan
  • Publication number: 20110210312
    Abstract: A semiconductor light-emitting device includes a substrate, a buffer layer, an n-type semiconductor layer, a conformational active layer and a p-type semiconductor layer. The n-type semiconductor layer includes a first surface and a second surface, and the first surface directly contacts the buffer layer. The second surface includes a plurality of recesses, and a conformational active layer formed on the second surface and within the plurality of recesses. Widths of upper portions of the recesses are larger than widths of lower portions of the recesses. Therefore, the stress between the n-type semiconductor layer and the conformational active layer can be released with the recesses.
    Type: Application
    Filed: May 13, 2011
    Publication date: September 1, 2011
    Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: Po Min Tu, Shih Cheng Huang, Ying Chao Yeh, Wen Yu Lin, Peng Yi Wu, Chih Peng Hsu, Shih Hsiung Chan
  • Publication number: 20110163295
    Abstract: A semiconductor includes a semiconductor layer, a plurality of recesses and a blocking layer. The recesses are formed on a surface of the semiconductor layer by etching fragile locations of the semiconductor layer where dislocation occurs. The blocking layer is filled in each recess. The semiconductor further includes a re-epitaxial semiconductor layer grown from a surface of the semiconductor layer without the covering of blocking layer, and the re-epitaxial semiconductor layer laterally overgrows toward areas of the recesses for overlaying the blocking layer.
    Type: Application
    Filed: March 16, 2011
    Publication date: July 7, 2011
    Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: PENG YI WU, SHIH CHENG HUANG, PO MIN TU, YING CHAO YEH, WEN YU LIN, SHIH HSIUNG CHAN
  • Publication number: 20110114983
    Abstract: A photoelectric device having Group III nitride semiconductor includes a conductive layer, a metallic mirror layer located on the conductive layer, and a Group III nitride semiconductor layer located on the metallic mirror layer. The Group III nitride semiconductor layer defines a number of microstructures thereon. Each microstructure includes at least one angled face, and the angled face of each microstructure is a crystal face of the Group III nitride semiconductor layer.
    Type: Application
    Filed: January 28, 2011
    Publication date: May 19, 2011
    Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: PO-MIN TU, SHIH-CHENG HUANG, WEN-YU LIN, CHIH-PENG HSU, SHIH-HSIUNG CHAN
  • Patent number: 7943494
    Abstract: The present invention provides a method for blocking the dislocation propagation of a semiconductor. A semiconductor layer is formed by epitaxial process on a substrate. A plurality of recesses is formed on the semiconductor layer by etching fragile locations of the semiconductor layer where dislocation occurs. Thereafter, a blocking layer is formed on each of the plurality of recesses. The aforesaid semiconductor layer undergoes epitaxial process again on the aforesaid semiconductor layer, and laterally overgrows to redirect the dislocation defects.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: May 17, 2011
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Peng Yi Wu, Shih Cheng Huang, Po Min Tu, Ying Chao Yeh, Wen Yu Lin, Shih Hsiung Chan