Patents by Inventor Shih-Huang Huang
Shih-Huang Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240381666Abstract: A method for fabricating a semiconductor memory device is provided. The method includes: etching a first region of the semiconductor memory device to expose a first capping layer; forming a second capping layer on the first capping layer; etching a portion of the first capping layer and a portion of the second capping layer to form a first trench reaching a first metal line; and forming a second metal line in the first trench to contact the first metal line.Type: ApplicationFiled: July 24, 2024Publication date: November 14, 2024Inventors: Harry-Hak-Lay Chuang, Sheng-Huang Huang, Shih-Chang Liu, Chern-Yow Hsu
-
Patent number: 10325634Abstract: The present invention provides a differential sensing circuit with a dynamic voltage reference for a single-ended bit line memory is disclosed. The exemplary differential sensing circuit comprises: a dynamic voltage reference generating unit and a differential sensing amplifying unit. The dynamic voltage reference generating unit is coupled to an input voltage, and utilized for receiving a setting signal to generate the dynamic voltage reference. The differential sensing amplifying unit is coupled to the single-ended bit line memory and the dynamic voltage reference generating unit, and utilized for receiving at least an input signal from the single-ended bit line memory and the dynamic voltage reference from the dynamic voltage reference generating unit, so as to generate at least an output signal accordingly.Type: GrantFiled: February 24, 2017Date of Patent: June 18, 2019Assignee: MediaTek Inc.Inventors: Shih-Huang Huang, Rei-Fu Huang
-
Patent number: 10043578Abstract: A sense amplifier circuit includes a single-ended sense amplifier and an isolation switch. The isolation switch is coupled between a bias node and a first line of a memory device, receives an output of the single-ended sense amplifier and selectively isolates the bias node and the first line in response to the output of the single-ended sense amplifier. The first line is coupled to a plurality of memory cells of the memory device.Type: GrantFiled: November 8, 2016Date of Patent: August 7, 2018Assignee: MEDIATEK INC.Inventors: Shu-Lin Lai, Shu-Hsuan Lin, Shih-Huang Huang
-
Publication number: 20170169868Abstract: The present invention provides a differential sensing circuit with a dynamic voltage reference for a single-ended bit line memory is disclosed. The exemplary differential sensing circuit comprises: a dynamic voltage reference generating unit and a differential sensing amplifying unit. The dynamic voltage reference generating unit is coupled to an input voltage, and utilized for receiving a setting signal to generate the dynamic voltage reference. The differential sensing amplifying unit is coupled to the single-ended bit line memory and the dynamic voltage reference generating unit, and utilized for receiving at least an input signal from the single-ended bit line memory and the dynamic voltage reference from the dynamic voltage reference generating unit, so as to generate at least an output signal accordingly.Type: ApplicationFiled: February 24, 2017Publication date: June 15, 2017Applicant: MediaTek Inc.Inventors: Shih-Huang Huang, Rei-Fu Huang
-
Patent number: 9659606Abstract: The present invention provides a differential sensing circuit with a dynamic voltage reference for a single-ended bit line memory is disclosed. The exemplary differential sensing circuit comprises: a dynamic voltage reference generating unit and a differential sensing amplifying unit. The dynamic voltage reference generating unit is coupled to an input voltage, and utilized for receiving a setting signal to generate the dynamic voltage reference. The differential sensing amplifying unit is coupled to the single-ended bit line memory and the dynamic voltage reference generating unit, and utilized for receiving at least an input signal from the single-ended bit line memory and the dynamic voltage reference from the dynamic voltage reference generating unit, so as to generate at least an output signal accordingly.Type: GrantFiled: March 2, 2015Date of Patent: May 23, 2017Assignee: MediaTek Inc.Inventors: Shih-Huang Huang, Rei-Fu Huang
-
Publication number: 20170140822Abstract: A sense amplifier circuit includes a single-ended sense amplifier and an isolation switch. The isolation switch is coupled between a bias node and a first line of a memory device, receives an output of the single-ended sense amplifier and selectively isolates the bias node and the first line in response to the output of the single-ended sense amplifier. The first line is coupled to a plurality of memory cells of the memory device.Type: ApplicationFiled: November 8, 2016Publication date: May 18, 2017Inventors: Shu-Lin LAI, Shu-Hsuan LIN, Shih-Huang HUANG
-
Patent number: 9449680Abstract: A write assist circuit capable of writing data to a memory cell with a bit line and a bit line bar is provided. The write assist circuit includes a clamping circuit, and first and second sense amplifiers. The clamping circuit is coupled to first and second nodes to prevent the voltage of the first and second nodes from being lower than a data-retention voltage. The first and second nodes are supplied with first and second voltage sources. The first and second sense amplifier are utilized to detect the voltage of the bit line or the bit line bar, amplify the voltage and pull down the voltage of one of the first or second node according to the data while the voltage of the other one of the first or second node is kept at a power supply voltage level.Type: GrantFiled: April 21, 2015Date of Patent: September 20, 2016Assignee: MEDIATEK INC.Inventor: Shih-Huang Huang
-
Publication number: 20160196868Abstract: A write assist circuit capable of writing data to a memory cell with a bit line and a bit line bar is provided. The write assist circuit includes a clamping circuit, and first and second sense amplifiers. The clamping circuit is coupled to first and second nodes to prevent the voltage of the first and second nodes from being lower than a data-retention voltage. The first and second nodes are supplied with first and second voltage sources. The first and second sense amplifier are utilized to detect the voltage of the bit line or the bit line bar, amplify the voltage and pull down the voltage of one of the first or second node according to the data while the voltage of the other one of the first or second node is kept at a power supply voltage level.Type: ApplicationFiled: April 21, 2015Publication date: July 7, 2016Inventor: Shih-Huang HUANG
-
Publication number: 20160180894Abstract: The present invention provides a differential sensing circuit with a dynamic voltage reference for a single-ended bit line memory is disclosed. The exemplary differential sensing circuit comprises: a dynamic voltage reference generating unit and a differential sensing amplifying unit. The dynamic voltage reference generating unit is coupled to an input voltage, and utilized for receiving a setting signal to generate the dynamic voltage reference. The differential sensing amplifying unit is coupled to the single-ended bit line memory and the dynamic voltage reference generating unit, and utilized for receiving at least an input signal from the single-ended bit line memory and the dynamic voltage reference from the dynamic voltage reference generating unit, so as to generate at least an output signal accordingly.Type: ApplicationFiled: March 2, 2015Publication date: June 23, 2016Inventors: Shih-Huang Huang, Rei-Fu Huang
-
Publication number: 20160141020Abstract: A static random access memory (SRAM) includes a memory cell array, a row decoder, a plurality of word-line drivers and an arbiter. The memory cell array includes a plurality of memory cell rows, wherein the memory cell rows are enabled by a plurality of word-lines, respectively. The row decoder is arranged to assert one of the memory cell rows according to a row address. The plurality of word-line drivers are each coupled to the row decoder and one of the memory cell rows. The arbiter is arranged to prevent multiple memory cells at a same word-line from being accessed at a same time.Type: ApplicationFiled: November 18, 2014Publication date: May 19, 2016Inventors: Rei-Fu Huang, Shih-Huang Huang
-
Patent number: 8879304Abstract: A word line control circuit includes a first PMOS transistor having a gate coupled to a first selection signal; a first NMOS transistor, coupled between a second node and a second voltage terminal, having a gate coupled to an inverted first selection signal, wherein the inverted first selection signal is obtained by inverting the first selection signal; and a plurality of word line drivers, at least one of the word line drivers comprising a first inverter and a second inverter, wherein a positive power terminal of the first inverter is coupled to the first voltage terminal, a negative power terminal of the first inverter is coupled to the second node, a positive power terminal of the second inverter is coupled to the first node, and a negative power terminal of the second inverter is coupled to the second voltage terminal.Type: GrantFiled: September 6, 2013Date of Patent: November 4, 2014Assignee: MediaTek Inc.Inventor: Shih-Huang Huang
-
Patent number: 8837244Abstract: The invention provides a memory output circuit. The memory output circuit is capable of receiving bit line data and bit bar line data output by a memory cell array. In one embodiment, the memory output circuit comprises a pre-charge circuit, a pre-amplifier circuit, and a sense amplifier. The pre-charge circuit is capable of pre-charging a first node and a first inverse node wherein the bit line data and bit bar line data are respectively output to the first node and the first inverse node. The pre-amplifier circuit is capable of generating a second voltage on a second node and a second inverse voltage on a second inverse node according to a first voltage on the first node and a first inverse voltage on the first inverse node. The sense amplifier is capable of detecting the second voltage on the second node and the second inverse voltage on the second inverse node to generate a third voltage on a third node and a third inverse voltage on a third inverse node.Type: GrantFiled: July 6, 2011Date of Patent: September 16, 2014Assignee: Mediatek Inc.Inventor: Shih-Huang Huang
-
Publication number: 20140010002Abstract: A word line control circuit includes a first PMOS transistor having a gate coupled to a first selection signal; a first NMOS transistor, coupled between a second node and a second voltage terminal, having a gate coupled to an inverted first selection signal, wherein the inverted first selection signal is obtained by inverting the first selection signal; and a plurality of word line drivers, at least one of the word line drivers comprising a first inverter and a second inverter, wherein a positive power terminal of the first inverter is coupled to the first voltage terminal, a negative power terminal of the first inverter is coupled to the second node, a positive power terminal of the second inverter is coupled to the first node, and a negative power terminal of the second inverter is coupled to the second voltage terminal.Type: ApplicationFiled: September 6, 2013Publication date: January 9, 2014Applicant: MediaTek Inc.Inventor: Shih-Huang HUANG
-
Patent number: 8568147Abstract: A tissue mimicking phantom is disclosed, in which the tissue-mimicking phantom comprises: at least an upper gelatin layer, each configured with at least a sunken area; at least a lower gelatin layer, each disposed beneath the at least one upper gelatin layer while being configured with at least a microchannel network having blood-mimicking fluid flowing therein; and at least a micro-heater. By the use of the sunken area of the at least one upper gelatin layer to simulate shapes and depths of different trauma wounds, the healing of anyone of the trauma wounds can be accessed clinically through a physical properties test while subjecting the trauma wound under different negative pressures and different dressings.Type: GrantFiled: March 12, 2008Date of Patent: October 29, 2013Assignee: Industrial Technology Research InstituteInventors: Tsung-Ter Kuo, Shih-Huang Huang
-
Patent number: 8559212Abstract: The invention provides a memory circuit. In one embodiment, the memory circuit comprises a first PMOS transistor, a second PMOS transistor, a first NMOS transistor, a second PMOS transistor, and a memory cell array. The first PMOS transistor is coupled between a first voltage terminal and a first node. The second PMOS transistor is coupled between the first voltage terminal and a second node. The first NMOS transistor is coupled between a third node and a second voltage terminal. The second NMOS transistor is coupled between a fourth node and the second voltage terminal. The memory cell array comprises a plurality of memory cells, at least one comprising a first inverter and a second inverter. A positive power terminal of the first inverter is coupled to the first node, a negative power terminal of the first inverter is coupled to the third node, a positive power terminal of the second inverter is coupled to the second node, and a negative power terminal of the second inverter is coupled to the fourth node.Type: GrantFiled: July 6, 2011Date of Patent: October 15, 2013Assignee: Mediatek Inc.Inventor: Shih-Huang Huang
-
Publication number: 20130010531Abstract: The invention provides a memory circuit. In one embodiment, the memory circuit comprises a first PMOS transistor, a second PMOS transistor, a first NMOS transistor, a second PMOS transistor, and a memory cell array. The first PMOS transistor is coupled between a first voltage terminal and a first node. The second PMOS transistor is coupled between the first voltage terminal and a second node. The first NMOS transistor is coupled between a third node and a second voltage terminal. The second NMOS transistor is coupled between a fourth node and the second voltage terminal. The memory cell array comprises a plurality of memory cells, at least one comprising a first inverter and a second inverter. A positive power terminal of the first inverter is coupled to the first node, a negative power terminal of the first inverter is coupled to the third node, a positive power terminal of the second inverter is coupled to the second node, and a negative power terminal of the second inverter is coupled to the fourth node.Type: ApplicationFiled: July 6, 2011Publication date: January 10, 2013Applicant: MEDIATEK INC.Inventor: Shih-Huang Huang
-
Publication number: 20130010559Abstract: The invention provides a memory output circuit. The memory output circuit is capable of receiving bit line data and bit bar line data output by a memory cell array. In one embodiment, the memory output circuit comprises a pre-charge circuit, a pre-amplifier circuit, and a sense amplifier. The pre-charge circuit is capable of pre-charging a first node and a first inverse node wherein the bit line data and bit bar line data are respectively output to the first node and the first inverse node. The pre-amplifier circuit is capable of generating a second voltage on a second node and a second inverse voltage on a second inverse node according to a first voltage on the first node and a first inverse voltage on the first inverse node. The sense amplifier is capable of detecting the second voltage on the second node and the second inverse voltage on the second inverse node to generate a third voltage on a third node and a third inverse voltage on a third inverse node.Type: ApplicationFiled: July 6, 2011Publication date: January 10, 2013Applicant: MEDIATEK INC.Inventor: Shih-Huang Huang
-
Publication number: 20090179684Abstract: The disclosure relates to a voltage converter, converting a first signal of a first voltage to output a second signal of a second voltage. A level shifter receives the first signal to generate the second signal. An isolation circuit is coupled to the output of the level shifter, passing the second signal out. When the input of voltage converter is floated, the isolation circuit stops passing the second signal as the output, instead, the isolation circuit outputs a substitution signal having a predetermined voltage level irrelevant to the input of the level shifter.Type: ApplicationFiled: March 18, 2009Publication date: July 16, 2009Applicant: MEDIATEK INC.Inventors: Rei-Fu Huang, Shih-huang Huang
-
Patent number: 7528628Abstract: The disclosure relates to a voltage converter, converting a first signal of a first voltage to output a second signal of a second voltage. A level shifter receives the first signal to generate the second signal. An isolation circuit is coupled to the output of the level shifter, passing the second signal out. When the input of voltage converter is floated, the isolation circuit stops passing the second signal as the output, instead, the isolation circuit outputs a substitution signal having a predetermined voltage level irrelevant to the input of the level shifter.Type: GrantFiled: June 1, 2007Date of Patent: May 5, 2009Assignee: Mediatek Inc.Inventors: Rei-Fu Huang, Shih-huang Huang
-
Publication number: 20090098521Abstract: A tissue mimicking phantom is disclosed, in which the tissue-mimicking phantom comprises: at least an upper gelatin layer, each configured with at least a sunken area; at least a lower gelatin layer, each disposed beneath the at least one upper gelatin layer while being configured with at least a microchannel network having blood-mimicking fluid flowing therein; and at least a micro-heater. By the use of the sunken area of the at least one upper gelatin layer to simulate shapes and depths of different trauma wounds, the healing of anyone of the trauma wounds can be accessed clinically through a physical properties test while subjecting the trauma wound under different negative pressures and different dressings.Type: ApplicationFiled: March 12, 2008Publication date: April 16, 2009Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTEInventors: TSUNG-TER KUO, SHIH-HUANG HUANG