Patents by Inventor Shih-Jung Ho

Shih-Jung Ho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11584995
    Abstract: A clustered reaction system includes multiple reaction devices, a cooling device and a gas supply device. Each of the reaction devices includes a reaction tank unit defining a reaction space, multiple through holes extending through the reaction tank unit, a heat exchange module including a heat exchange passage surrounding the reaction tank, and an injection module extending through one of the through hole. The cooling device is connected to the heat exchange passages of the reaction devices for supplying a coolant into the heat exchange passages. The gas supply device is communicated fluidly with one of the through holes of each of the reaction devices for supplying a gas to the reaction devices.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: February 21, 2023
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Shih-Jung Ho, Hsueh-Shih Chen
  • Publication number: 20210363641
    Abstract: A clustered reaction system includes multiple reaction devices, a cooling device and a gas supply device. Each of the reaction devices includes a reaction tank unit defining a reaction space, multiple through holes extending through the reaction tank unit, a heat exchange module including a heat exchange passage surrounding the reaction tank, and an injection module extending through one of the through hole. The cooling device is connected to the heat exchange passages of the reaction devices for supplying a coolant into the heat exchange passages. The gas supply device is communicated fluidly with one of the through holes of each of the reaction devices for supplying a gas to the reaction devices.
    Type: Application
    Filed: October 22, 2020
    Publication date: November 25, 2021
    Inventors: Shih-Jung HO, Hsueh-Shih CHEN
  • Patent number: 11145636
    Abstract: A method for making inkjet-printed encapsulated quantum dots and a light conversion unit using the inkjet-printed encapsulated quantum dots are disclosed. The light conversion unit comprises: a substrate, a light convertor carrying layer having several accommodating grooves, several first micro encapsulated QD structures, and several second micro encapsulated QD structures. In case of letting the substrate has a hydrophobic surface, at least one inkjet-printing nozzle is utilized for injecting a first QDs solution and a second QDs solution into the accommodating grooves by a form of droplet, such that one third of the accommodating grooves are formed with the first micro encapsulated QD structure, and another one third of the accommodating grooves formed with the second micro encapsulated QD structure. Moreover, a micro LED display panel having the light conversion unit exhibits a color gamut that is approximately 110% NTSC.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: October 12, 2021
    Assignee: National Tsing Hua University
    Inventors: Hsueh-Shih Chen, Shih-Jung Ho
  • Patent number: 10935694
    Abstract: Light scattering particles made of TiO2, BaSO4, SiO2, or Al2O3 have been used in a QD layer of a QD-LED for enhancing luminous intensity. However, the light scatters are found to decline the light conversion efficiency of the QD layer. In view of that, the present invention particularly discloses a light conversion material with high conversion efficiency for use in the QD-LED. The light conversion material mainly comprises a polymer matrix, a plurality of 3D photonic crystals dispersed in the polymer matrix, and a plurality of quantum dots dispersed in the polymer matrix, wherein each of the plurality of 3D photonic crystals is formed by applying a self-assembly process to a plurality of polymer beads. Moreover, a variety of experimental data have proved that, this light conversion material indeed exhibits outstanding photoluminescence intensity and light conversion efficiency both superior than that of the conventionally-used QD layer.
    Type: Grant
    Filed: June 23, 2018
    Date of Patent: March 2, 2021
    Inventors: Hsueh-Shih Chen, Shih-Jung Ho
  • Publication number: 20190293842
    Abstract: Light scattering particles made of TiO2, BaSO4, SiO2, or Al2O3 have been used in a QD layer of a QD-LED for enhancing luminous intensity. However, the light scatters are found to decline the light conversion efficiency of the QD layer. In view of that, the present invention particularly discloses a light conversion material with high conversion efficiency for use in the QD-LED. The light conversion material mainly comprises a polymer matrix, a plurality of 3D photonic crystals dispersed in the polymer matrix, and a plurality of quantum dots dispersed in the polymer matrix, wherein each of the plurality of 3D photonic crystals is formed by applying a self-assembly process to a plurality of polymer beads. Moreover, a variety of experimental data have proved that, this light conversion material indeed exhibits outstanding photoluminescence intensity and light conversion efficiency both superior than that of the conventionally-used QD layer.
    Type: Application
    Filed: June 23, 2018
    Publication date: September 26, 2019
    Inventors: Hsueh-Shih Chen, SHIH-JUNG HO
  • Patent number: 10261643
    Abstract: The present invention discloses a novel and inventive transparent conductive film Differing from conventional metal mesh substrates are mainly constituted by silver nanowires (AgNW), the present invention particularly designs a nano metal wire consisting of a metallic core wire, a transition layer and a protection layer, and further develops a transparent conductive film consisting of a substrate and a metal mesh layer; wherein the metal mesh layer is constituted by the said nano metal wires. It is worth describing that, a variety of experimental data prove that the thermal resistance of this novel transparent conductive film is up to 400° C.; moreover, experimental data also exhibit that the transparent conductive film can filter part of blue light portion out of a white light by 20-30%.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: April 16, 2019
    Assignee: National Tsing Hua University
    Inventors: Hsueh-Shih Chen, Ming-Hua Yeh, Shih-Jung Ho
  • Patent number: 10010850
    Abstract: The present invention mainly provides a non-contact reactor consisting of a reaction vessel having a particularly-designed size, a plurality of injection modules, an agitator, a heat exchange module, and an electrical gate valve module. Operators can inject at least one precursor solution into the reaction nanometer-scale semiconductor crystallites vessel and make the injected precursor solution reach a specific position in the reaction vessel by using the electrical gate valve to control the injection pressure of the injection modules. Moreover, the operators can further control the rotation speed of the agitator through a controller, so as to evenly and quickly mix the injected precursor solution and a specific solution pre-filled into the reaction vessel to a mixture solution; therefore, the acceleration of production rate and the enhance of production yield of the semiconductor nanocrystals are carried out.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: July 3, 2018
    Assignee: National Tsing Hua University
    Inventors: Hsueh-Shih Chen, Shih-Jung Ho, Chang-Wei Yeh
  • Publication number: 20180067579
    Abstract: The present invention discloses a novel and inventive transparent conductive film Differing from conventional metal mesh substrates are mainly constituted by silver nanowires (AgNW), the present invention particularly designs a nano metal wire consisting of a metallic core wire, a transition layer and a protection layer, and further develops a transparent conductive film consisting of a substrate and a metal mesh layer; wherein the metal mesh layer is constituted by the said nano metal wires. It is worth describing that, a variety of experimental data prove that the thermal resistance of this novel transparent conductive film is up to 400° C.; moreover, experimental data also exhibit that the transparent conductive film can filter part of blue light portion out of a white light by 20-30%.
    Type: Application
    Filed: January 10, 2017
    Publication date: March 8, 2018
    Inventors: HSUEH-SHIH CHEN, MING-HUA YEH, SHIH-JUNG HO
  • Publication number: 20180050316
    Abstract: The present invention mainly provides a non-contact reactor consisting of: a reaction vessel having a particularly-designed size, a plurality of injection modules, an agitator, a heat exchange module, and an electrical gate valve module. When this non-contact reactor is operated to produce, operators are able to inject at least one precursor solution into the reaction nanometer-scale semiconductor crystallites vessel and make the injected precursor solution reach a specific position in the reaction vessel by using the electrical gate valve to control the injection pressure of the injection modules. Moreover, the operators can further properly control the rotation speed of the agitator through a controller, so as to evenly and quickly mix the injected precursor solution and a specific solution pre-filled into the reaction vessel to a mixture solution; therefore, the acceleration of production rate and the enhance of production yield of the semiconductor nanocrystals are carried out.
    Type: Application
    Filed: January 10, 2017
    Publication date: February 22, 2018
    Inventors: HSUEH-SHIH CHEN, SHIH-JUNG HO, CHANG-WEI YEH
  • Patent number: 9533545
    Abstract: An electric vehicle thermal management system includes a dynamic heat dissipating unit, an air conditioner unit, a heat exchange unit, and a control unit. The heat exchange unit is connected to the dynamic heat dissipating unit and the air conditioner unit for transferring heat therebetween. The control unit adjusts the flow rate of a coolant in the dynamic heat dissipating unit for controlling and adjusting the heat dissipating ability of the dynamic heat dissipating unit to meet the heat dissipation of the system, thereby improving distribution and management of heat energy in the system.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: January 3, 2017
    Assignee: Automotive Research & Testing Center
    Inventors: Liang-Cheng Chang, Hong-Chi Wang, Chih-Jung Yeh, Shih-Jung Ho
  • Publication number: 20160369975
    Abstract: A quantum dot-containing wavelength converter includes a matrix layer and quantum dots dispersed in the matrix layer. Each of the quantum clots includes a core of a compound M1A1, an inner shell, and a multi-pod-structured outer shell of a compound M1A2 or M2A2. Each of M1 and M2 is a metal selected from Zn, Sn, Pb, Cd, In, Ga, Ge, Mn, Co, Fe, Al, Mg, Ca, Sr, Ba, Ni, Ag, Ti and Cu, and each of A1 and A2 is an element selected from Se, S, Te, P, As, N, I, and O. The inner shell contains a compound M1xM21-xAlyA21-y, wherein M2 is different from M1 and A2 is different from A1. The multi-pod-structured outer shell has a base portion and protrusion portions that extend from the base portion in a direction away from the inner shell.
    Type: Application
    Filed: June 22, 2015
    Publication date: December 22, 2016
    Applicant: National Tsing Hua University
    Inventors: Hsueh-Shih CHEN, Shih-Jung HO, Guan-Hong CHEN, Ming-Hua YEH
  • Patent number: 9061564
    Abstract: An active vehicle with variable inclination mechanism is provided. The active vehicle with variable inclination mechanism comprises a linear slide mechanism, two sets of longitudinal interlocking mechanism, a steering control mechanism, and a control unit. The linear slide mechanism comprises a reciprocating action member. A lateral displacement of the reciprocating action member drives the longitudinal interlocking mechanism to produce a displacement along a longitudinal direction while a torque is applied at the steering control mechanism. The wheels are driven to move along an opposite longitudinal direction and to form an inclination. Using the active vehicle with variable inclination mechanism can provide a real-time inclination force while rounding a corner as well as increase the safety. Besides, the driver can easily get on/off the vehicle when the vehicle is stationary and the reciprocating action member is locked at the stationary position of the vehicle.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: June 23, 2015
    Assignee: Automotive Research & Testing Center
    Inventors: Chao-Chih Yu, Chih-Jung Yeh, Jin-Yan Hsu, Jiun-Jie Chen, Shih-Jung Ho
  • Publication number: 20150165855
    Abstract: An active vehicle with variable inclination mechanism is provided. The active vehicle with variable inclination mechanism comprises a linear slide mechanism, two sets of longitudinal interlocking mechanism, a steering control mechanism, and a control unit. The linear slide mechanism comprises a reciprocating action member. A lateral displacement of the reciprocating action member drives the longitudinal interlocking mechanism to produce a displacement along a longitudinal direction while a torque is applied at the steering control mechanism. The wheels are driven to move along an opposite longitudinal direction and to form an inclination. Using the active vehicle with variable inclination mechanism can provide a real-time inclination force while rounding a corner as well as increase the safety. Besides, the driver can easily get on/off the vehicle when the vehicle is stationary and the reciprocating action member is locked at the stationary position of the vehicle.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 18, 2015
    Applicant: Automotive Research & Testing Center
    Inventors: Chao-Chih YU, Chih-Jung YEH, Jin-Yan HSU, Jiun-Jie CHEN, Shih-Jung HO
  • Publication number: 20150121922
    Abstract: An electric vehicle thermal management system includes a dynamic heat dissipating unit, an air conditioner unit, a heat exchange unit, and a control unit. The heat exchange unit is connected to the dynamic heat dissipating unit and the air conditioner unit for transferring heat therebetween. The control unit adjusts the flow rate of a coolant in the dynamic heat dissipating unit for controlling and adjusting the heat dissipating ability of the dynamic heat dissipating unit to meet the heat dissipation of the system, thereby improving distribution and management of heat energy in the system.
    Type: Application
    Filed: December 27, 2013
    Publication date: May 7, 2015
    Applicant: Automotive Research & Testing Center
    Inventors: Liang-Cheng Chang, Hong-Chi Wang, Chih-Jung Yeh, Shih-Jung Ho