Patents by Inventor Shih-May Christine Ong

Shih-May Christine Ong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7459509
    Abstract: The invention provides ethylene/?-olefin copolymers exhibiting improved environmental stress cracking resistance properties, and methods for the production of the copolymers in a single reactor by means of a bimetallic catalyst including a Ziegler component and a metallocene component.
    Type: Grant
    Filed: February 24, 2007
    Date of Patent: December 2, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David Bruce Barry, Gary M. Diamond, Hitesh A. Fruitwala, Shih-May Christine Ong, Chunming Wang
  • Patent number: 7199195
    Abstract: The invention provides ethylene/?-olefin copolymers exhibiting improved environmental stress cracking resistance properties, and methods for the production of the copolymers in a single reactor by means of a bimetallic catalyst including a Ziegler component and a metallocene component.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: April 3, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David Bruce Barry, Gary M. Diamond, Hitesh A. Fruitwala, Shih-May Christine Ong, Chunming Wang
  • Patent number: 7129302
    Abstract: Bimetallic catalyst for producing polyethylene resins with a bimodal molecular weight distribution, its preparation and use. The catalyst is obtainable by a process which includes contacting a support material with an organomagnesium component and carbonyl-containing component. The support material so treated is contacted with a non-metallocene transition metal component to obtain a catalyst intermediate, the latter being contacted with an aluminoxane component and a metallocene component, This catalyst may be further activated with, e.g., alkylaluminum cocatalyst, and contacted, under polymerization conditions, with ethylene and optionally one or more comonomers, to produce ethylene homo- or copolymers with a bimodal molecular weight distribution and improved resin swell properties in a single reactor. These ethylene polymers are particularly suitable for blow molding applications.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: October 31, 2006
    Assignee: Univation Technologies, LLC
    Inventors: Robert Ivan Mink, Thomas Edward Nowlin, Pradeep P. Shirodkar, Gary M. Diamond, David Bruce Barry, Chunming Wang, Hitesh A. Fruitwala, Shih-May Christine Ong
  • Patent number: 6964937
    Abstract: Bimetallic catalyst for producing polyethylene resins with a bimodal molecular weight distribution, its preparation and use. The catalyst is obtainable by a process which includes contacting a support material with an organomagnesium component and carbonyl-containing component. The support material so treated is contacted with a non-metallocene transition metal component to obtain a catalyst intermediate, the latter being contacted with an aluminoxane component and a metallocene component. This catalyst may be further activated with, e.g., alkylaluminum cocatalyst, and contacted, under polymerization conditions, with ethylene and optionally one or more comonomers, to produce ethylene homo- or copolymers with a bimodal molecular weight distribution and improved resin swell properties in a single reactor. These ethylene polymers are particularly suitable for blow molding applications.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: November 15, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Robert Ivan Mink, Thomas Edward Nowlin, Pradeep P. Shirodkar, Gary M. Diamond, David Bruce Barry, Chunming Wang, Hitesh A. Fruitwala, Shih-May Christine Ong
  • Publication number: 20040186251
    Abstract: The invention provides ethylene/&agr;-olefin copolymers exhibiting improved environmental stress cracking resistance properties, and methods for the production of the copolymers in a single reactor by means of a bimetallic catalyst including a Ziegler component and a metallocene component.
    Type: Application
    Filed: May 12, 2004
    Publication date: September 23, 2004
    Inventors: David Bruce Barry, Gary M Diamond, Hitesh A Fruitwala, Shih-May Christine Ong, Chunming Wang
  • Publication number: 20040048736
    Abstract: Bimetallic catalyst for producing polyethylene resins with a bimodal molecular weight distribution, its preparation and use. The catalyst is obtainable by a process which includes contacting a support material with an organomagnesium component and carbonyl-containing component. The support material so treated is contacted with a non-metallocene transition metal component to obtain a catalyst intermediate, the latter being contacted with an aluminoxane component and a metallocene component. This catalyst may be further activated with, e.g., alkylaluminum cocatalyst, and contacted, under polymerization conditions, with ethylene and optionally one or more comonomers, to produce ethylene homo- or copolymers with a bimodal molecular weight distribution and improved resin swell properties in a single reactor. These ethylene polymers are particularly suitable for blow molding applications.
    Type: Application
    Filed: May 29, 2003
    Publication date: March 11, 2004
    Inventors: Robert Ivan Mink, Thomas Edward Nowlin, Pradeep P. Shirodkar, Gary M. Diamond, David Bruce Barry, Chunming Wang, Hitesh A. Fruitwala, Shih-May Christine Ong
  • Patent number: 6509431
    Abstract: The invention relates to alteration of a linear low density polyethylene which is ordinarily free of long chain branching to introduce long chain branching into the polymer.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: January 21, 2003
    Assignee: ExxonMobil Oil Corporation
    Inventors: Robert Phillip Duttweiler, Michael Joseph Krause, Frederick Yip-Kwai Lo, Shih-May Christine Ong, Pradeep Pandurang Shirodkar
  • Patent number: 5883203
    Abstract: In gas phase polymerizations and copolymerizations of ethylene, reagents or cofeeds control the molecular weight, expressed as MI (wherein MI is measured according to ASTM D-1238 Condition E), of the resin product. Use of isopentane and electron donating compounds decrease MI; whereas, electron withdrawing compounds increase MI.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: March 16, 1999
    Assignee: Mobil Oil Coporation
    Inventors: Subrahmanyam Cheruvu, Frederick Y. Lo, Shih-May Christine Ong