Patents by Inventor Shih-Yu Tu

Shih-Yu Tu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210033986
    Abstract: A droplet catcher system of an EUV lithography apparatus is provided. The droplet catcher system includes a catcher body, a heat transfer part, a heat exchanger, and a controller. The catcher body has an outer surface. The heat transfer part is directly attached to the outer surface of the catcher body. The heat exchanger is thermally coupled to the heat transfer part. The controller is electrically coupled to the heat exchanger.
    Type: Application
    Filed: March 2, 2020
    Publication date: February 4, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Yu Tu, Po-Chung Cheng, Hsiao-Lun Chang, Li-Jui Chen, Han-Lung Chang
  • Publication number: 20200107427
    Abstract: A droplet generator assembly includes a storage tank, a refill system, a droplet generator, and a temperature control system. The storage tank is configured to store a target material. The refill system is connected to the storage tank. The droplet generator includes a reservoir and a nozzle connected to the reservoir, in which the droplet generator is connected to the refill system, and the refill system is configured to deliver the target material to the reservoir. The temperature control system is adjacent to the refill system or the reservoir.
    Type: Application
    Filed: July 11, 2019
    Publication date: April 2, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Yu TU, Yu-Kuang SUN, Shao-Hua WANG, Han-Lung CHANG, Hsiao-Lun CHANG, Li-Jui CHEN, Po-Chung CHENG, Cheng-Hao LAI, Hsin-Feng CHEN, Wei-Shin CHENG, Ming-Hsun TSAI, Yen-Hsun CHEN
  • Patent number: 10156731
    Abstract: The present invention provides a partial random laser illumination device having a random phase and amplitude component, comprising: a gain medium, a pump source, a highly reflective mirror, and a random phase and amplitude component. The pump source excites electrons in the gain medium from a low energy level to a high energy level. The highly reflective mirror is passed through by an amplified laser beam emitted by the gain medium. The random phase and amplitude component is disposed between the gain medium and the highly reflective mirror, and is passed through by the amplified laser beam emitted by the gain medium.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: December 18, 2018
    Assignee: NATIONAL TAIWAN UNIVERSITY
    Inventors: Shih-Yu Tu, Hoang-Yan Lin
  • Publication number: 20150194783
    Abstract: The present invention provides a partial random laser illumination device having a random phase and amplitude component, comprising: a gain medium, a pump source, a highly reflective mirror, and a random phase and amplitude component. The pump source excites electrons in the gain medium from a low energy level to a high energy level. The highly reflective mirror is passed through by an amplified laser beam emitted by the gain medium. The random phase and amplitude component is disposed between the gain medium and the highly reflective mirror, and is passed through by the amplified laser beam emitted by the gain medium.
    Type: Application
    Filed: July 2, 2014
    Publication date: July 9, 2015
    Inventors: Shih-Yu TU, Hoang-Yan LIN
  • Patent number: 8146389
    Abstract: The present invention relates to a fiber having a core of crystal fiber doped with chromium and a glass cladding. The fiber has a gain bandwidth of more than 300 nm including 1.3 mm to 1.6 mm in optical communication, and can be used as light source, optical amplifier and tunable laser when being applied for optical fiber communication. The present invention also relates to a method of making the fiber. First, a chromium doped crystal fiber is grown by laser-heated pedestal growth (LHPG). Then, the crystal fiber is cladded with a glass cladding by codrawing laser-heated pedestal growth (CDLHPG). Because it is a high temperature manufacture process, the cladding manufactured by this method is denser than that by evaporation technique, and can endure relative high damage threshold power for the pumping light.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: April 3, 2012
    Assignee: National Sun Yat-Sen University
    Inventors: Sheng-Lung Huang, Chia-Yao Lo, Kwang-Yao Huang, Shih-Yu Tu, Hsiao-Wen Lee, Sheng-Pan Huang, Sun-Bin Yin
  • Patent number: 7519262
    Abstract: The present invention relates to a fiber having a core of crystal fiber doped with chromium and a glass cladding. The fiber has a gain bandwidth of more than 300 nm including 1.3 mm to 1.6 mm in optical communication, and can be used as light source, optical amplifier and tunable laser when being applied for optical fiber communication. The present invention also relates to a method of making the fiber. First, a chromium doped crystal fiber is grown by laser-heated pedestal growth (LHPG). Then, the crystal fiber is cladded with a glass cladding by codrawing laser-heated pedestal growth (CDLHPG). Because it is a high temperature manufacture process, the cladding manufactured by this method is denser than that by evaporation technique, and can endure relative high damage threshold power for the pumping light.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: April 14, 2009
    Assignee: National Sun Yat-Sen University
    Inventors: Sheng-Lung Huang, Chia-Yao Lo, Kwang-Yao Huang, Shih-Yu Tu, Hsiao-Wen Lee, Sheng-Pan Huang, Sun-Bin Yin
  • Patent number: 7352949
    Abstract: The present invention relates to a fiber having a core of crystal fiber doped with chromium and a glass cladding. The fiber has a gain bandwidth of more than 300 nm including 1.3 mm to 1.6 mm in optical communication, and can be used as light source, optical amplifier and tunable laser when being applied for optical fiber communication. The present invention also relates to a method of making the fiber. First, a chromium doped crystal fiber is grown by laser-heated pedestal growth (LHPG). Then, the crystal fiber is cladded with a glass cladding by codrawing laser-heated pedestal growth (CDLHPG). Because it is a high temperature manufacture process, the cladding manufactured by this method is denser than that by evaporation technique, and can endure relative high damage threshold power for the pumping light.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: April 1, 2008
    Assignee: National Sun Yat-Sen University
    Inventors: Sheng-Lung Huang, Chia-Yao Lo, Kwang-Yao Huang, Shih-Yu Tu, Hsiao-Wen Lee, Sheng-Pan Huang, Sun-Bin Yin
  • Patent number: 7298545
    Abstract: A tunable coherent light source includes a pump laser for generating a pump beam and an optical parametric oscillator including a crystal exhibiting an output curve for a pump beam of a defined wavelength, the output curve defining wavelengths of signal and idler outputs based on periodically poled grating periods of the crystal. The crystal has a plurality of segments associated with a plurality of grating periods of the output curve, each segment of the plurality of segments having a different crystal structure. At least one of the plurality of segments comprises a crystal structure combining at least two of the grating periods A heating device heats the crystal to an elevated operating temperature and is adjustable for adjusting the output wavelengths of each of the segments.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: November 20, 2007
    Assignee: Academia Sinica
    Inventors: Andrew H. Kung, Shining Zhu, Shih-Yu Tu, Zhida Gao
  • Publication number: 20070263969
    Abstract: The present invention relates to a fiber having a core of crystal fiber doped with chromium and a glass cladding. The fiber has a gain bandwidth of more than 300 nm including 1.3 mm to 1.6 mm in optical communication, and can be used as light source, optical amplifier and tunable laser when being applied for optical fiber communication. The present invention also relates to a method of making the fiber. First, a chromium doped crystal fiber is grown by laser-heated pedestal growth (LHPG). Then, the crystal fiber is cladded with a glass cladding by codrawing laser-heated pedestal growth (CDLHPG). Because it is a high temperature manufacture process, the cladding manufactured by this method is denser than that by evaporation technique, and can endure relative high damage threshold power for the pumping light.
    Type: Application
    Filed: April 27, 2007
    Publication date: November 15, 2007
    Inventors: Sheng-Lung Huang, Chia-Yao Lo, Kwang-Yao Huang, Shih-Yu Tu, Hsiao-Wen Lee, Sheng-Pan Huang, Sun-Bin Yin
  • Publication number: 20070236779
    Abstract: In general, in one aspect, the invention features a method that includes converting radiation at a first wavelength ?i to radiation at a second wavelength ?g and exposing an article to the radiation at ?g to convert the radiation at ?g to radiation at a third wavelength ?r and radiation at a fourth wavelength ?b. ?r is red radiation, ?g is green radiation, and ?b is blue radiation and the article includes lithium tantalate.
    Type: Application
    Filed: April 7, 2006
    Publication date: October 11, 2007
    Inventors: Andrew Kung, Zhida Gao, Shih-Yu Tu, Shining Zhu
  • Publication number: 20070147443
    Abstract: A tunable coherent light source includes a pump laser for generating a pump beam and an optical parametric oscillator including a crystal exhibiting an output curve for a pump beam of a defined wavelength, the output curve defining wavelengths of signal and idler outputs based on periodically poled grating periods of the crystal. The crystal has a plurality of segments associated with a plurality of grating periods of the output curve, each segment of the plurality of segments having a different crystal structure. At least one of the plurality of segments comprises a crystal structure combining at least two of the grating periods A heating device heats the crystal to an elevated operating temperature and is adjustable for adjusting the output wavelengths of each of the segments.
    Type: Application
    Filed: December 23, 2005
    Publication date: June 28, 2007
    Inventors: Andrew Kung, Shining Zhu, Shih-Yu Tu, Zhida Gao
  • Publication number: 20060174658
    Abstract: The present invention relates to a fiber having a core of crystal fiber doped with chromium and a glass cladding. The fiber has a gain bandwidth of more than 300 nm including 1.3 mm to 1.6 mm in optical communication, and can be used as light source, optical amplifier and tunable laser when being applied for optical fiber communication. The present invention also relates to a method of making the fiber. First, a chromium doped crystal fiber is grown by laser-heated pedestal growth (LHPG). Then, the crystal fiber is cladded with a glass cladding by codrawing laser-heated pedestal growth (CDLHPG). Because it is a high temperature manufacture process, the cladding manufactured by this method is denser than that by evaporation technique, and can endure relative high damage threshold power for the pumping light.
    Type: Application
    Filed: March 17, 2006
    Publication date: August 10, 2006
    Inventors: Sheng-Lung Huang, Chia-Yao Lo, Kwang-Yao Huang, Shih-Yu Tu, Hsiao-Wen Lee, Sheng-Pan Huang, Sun-Bin Yin
  • Publication number: 20060110122
    Abstract: The present invention relates to a fiber having a core of crystal fiber doped with chromium and a glass cladding. The fiber has a gain bandwidth of more than 300 nm including 1.3 mm to 1.6 mm in optical communication, and can be used as light source, optical amplifier and tunable laser when being applied for optical fiber communication. The present invention also relates to a method of making the fiber. First, a chromium doped crystal fiber is grown by laser-heated pedestal growth (LHPG). Then, the crystal fiber is cladded with a glass cladding by codrawing laser-heated pedestal growth (CDLHPG). Because it is a high temperature manufacture process, the cladding manufactured by this method is denser than that by evaporation technique, and can endure relative high damage threshold power for the pumping light.
    Type: Application
    Filed: November 24, 2004
    Publication date: May 25, 2006
    Inventors: Sheng-Lung Huang, Chia-Yao Lo, Kwang-Yao Huang, Shih-Yu Tu, Hsiao-Wen Lee, Sheng-Pan Huang, Sun-Bin Yin