Patents by Inventor Shihai He

Shihai He has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9666214
    Abstract: A magnetic read apparatus includes a read sensor, a shield structure and a side magnetic bias structure. The read sensor includes a free layer having a side and a nonmagnetic spacer layer. The shield structure includes a shield pinning structure and a shield reference structure. The nonmagnetic spacer layer is between the shield reference structure and the free layer. The shield reference structure is between the shield pinning structure and the nonmagnetic spacer layer. The shield pinning structure includes a pinned magnetic moment in a first direction. The shield reference structure includes a shield reference structure magnetic moment weakly coupled with the pinned magnetic moment. The side magnetic bias structure is adjacent to the side of the free layer.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: May 30, 2017
    Assignee: WESTERN DIGITAL (FREMONT), LLC
    Inventors: Gerardo A. Bertero, Shaoping Li, Qunwen Leng, Yuankai Zheng, Rongfu Xiao, Ming Mao, Shihai He, Miaoyin Wang
  • Publication number: 20160336030
    Abstract: A method and system provide a magnetic transducer having an air-bearing surface (ABS). The method includes providing a first shield, a first read sensor, an antiferromagnetically coupled (AFC) shield that includes an antiferromagnet, a second read sensor and a second shield. The read sensors are between the first and second shields. The AFC shield is between the read sensors. An optional anneal for the first shield is in a magnetic field at a first angle from the ABS. Anneals for the first and second read sensors are in magnetic fields in desired first and second read sensor bias directions. The AFC shield anneal is in a magnetic field at a third angle from the ABS. The second shield anneal is in a magnetic field at a fifth angle from the ABS. The fifth angle is selected based on a thickness and a desired AFC shield bias direction for the antiferromagnet.
    Type: Application
    Filed: July 26, 2016
    Publication date: November 17, 2016
    Inventors: RONGFU XIAO, SHIHAI HE, DANIELE MAURI, MING MAO, SHAOPING LI
  • Publication number: 20160250331
    Abstract: The design of biodegradable magnetic nanoparticles for use in in-vivo biomedical applications. The particles can include Fe in combination with one or more of Mg, Zn, Si, C, N, and P atoms or other particles. The nanoparticles can be degraded in-vivo after usage. The nanoparticles can cease heating upon reaching a predetermined temperature or other value.
    Type: Application
    Filed: March 2, 2016
    Publication date: September 1, 2016
    Inventors: Jian-Ping Wang, Ying Jing, Shihai He
  • Patent number: 9431031
    Abstract: A method and system provide a magnetic transducer having an air-bearing surface (ABS). The method includes providing a first shield, a first read sensor, an antiferromagnetically coupled (AFC) shield that includes an antiferromagnet, a second read sensor and a second shield. The read sensors are between the first and second shields. The AFC shield is between the read sensors. An optional anneal for the first shield is in a magnetic field at a first angle from the ABS. Anneals for the first and second read sensors are in magnetic fields in desired first and second read sensor bias directions. The AFC shield anneal is in a magnetic field at a third angle from the ABS. The second shield anneal is in a magnetic field at a fifth angle from the ABS. The fifth angle is selected based on a thickness and a desired AFC shield bias direction for the antiferromagnet.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: August 30, 2016
    Assignee: WESTERN DIGITAL (FREMONT), LLC
    Inventors: Rongfu Xiao, Shihai He, Daniele Mauri, Ming Mao, Shaoping Li
  • Publication number: 20160163961
    Abstract: A spin transfer torque magnetic junction includes a magnetic reference layer structure with magnetic anisotropy perpendicular to a substrate plane. A laminated magnetic free layer comprises at least three sublayers (e.g. sub-layers of CoFeB, CoPt, FePt, or CoPd) having magnetic anisotropy perpendicular to the substrate plane. Each such sublayer is separated from an adjacent one by a dusting layer (e.g. tantalum). An insulative barrier layer (e.g. MgO) is disposed between the laminated free layer and the magnetic reference layer structure. The spin transfer torque magnetic junction includes conductive base and top electrodes, and a current polarizing structure that has magnetic anisotropy parallel to the substrate plane. In certain embodiments, the current polarizing structure may also include a non-magnetic spacer layer (e.g. MgO, copper, etc).
    Type: Application
    Filed: January 12, 2016
    Publication date: June 9, 2016
    Inventors: Shaoping Li, Gerardo A. Bertero, Yuankai Zheng, Qunwen Leng, Shihai He, Yunfei Ding, Ming Mao, Abhinandan Chougule, Daniel K. Lottis
  • Patent number: 9236560
    Abstract: A spin transfer torque magnetic junction includes a magnetic reference layer structure with magnetic anisotropy perpendicular to a substrate plane. A laminated magnetic free layer comprises at least three sublayers (e.g. sub-layers of 6 to 30 Angstroms of CoFeB, CoPt, FePt, or CoPd) having magnetic anisotropy perpendicular to the substrate plane. Each such sublayer is separated from an adjacent one by a tantalum dusting layer. An insulative barrier layer (e.g. MgO) is disposed between the laminated free layer and the magnetic reference layer structure. The spin transfer torque magnetic junction includes conductive base and top electrodes, and a current polarizing structure that has magnetic anisotropy parallel to the substrate plane. In certain embodiments, the current polarizing structure may also include a non-magnetic spacer layer (e.g. MgO, copper, etc).
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: January 12, 2016
    Assignee: Western Digital (Fremont), LLC
    Inventors: Shaoping Li, Gerardo A. Bertero, Yuankai Zheng, Qunwen Leng, Shihai He, Yunfei Ding, Ming Mao, Abhinandan Chougule, Daniel K. Lottis
  • Publication number: 20150376772
    Abstract: A multi-surface nanoparticle source includes a first end having an inlet configured to receive a flow of gas, a second end comprising an outlet through which nanoparticles exit the nanoparticle source, and two or more targets spaced apart and arranged about an axis extending from the first end to the second end. At least at least one of the targets is hollow, and the inlet is arranged to direct a flow of the gas through the hollow target, between at least two of the targets, or both. The gas impacts the targets, releasing atoms from the target and through the second end. The targets may be arranged lengthwise and concentrically about the axis. In some cases, a multi-surface nanoparticle source includes one or more magnets. Nanoparticles formed with a multi-surface nanoparticle deposition system may be homogeneous or have a core-shell structure.
    Type: Application
    Filed: January 31, 2014
    Publication date: December 31, 2015
    Inventors: Jian-Ping Wang, Claire Hovland, Shihai He
  • Patent number: 8970988
    Abstract: A method and system provide a magnetic transducer having an air-bearing surface (ABS) and at least two read sensors. The magnetic transducer also includes a first read shield, a first read sensor, a middle shield, a second read sensor, a second read shield, a first electric gap and a second electric gap. The first read sensor is in a down track direction from the first read shield. The middle shield is in a down track direction from the first read sensor. The middle shield is between the first read sensor and the second read sensor. A first portion of the first electric gap is in a direction opposite to the down track direction from the first read sensor. The first read sensor and the second read sensor are between the first electric gap and the second electric gap in a cross-track direction.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: March 3, 2015
    Assignee: Western Digital (Fremont), LLC
    Inventors: Shaoping Li, Gerardo A. Bertero, Changhe Shang, Ge Yi, Steven C. Rudy, Guolun Hao, Qunwen Leng, Shihai He, Yingbo Zhang, Ming Mao, Lien-Chang Wang
  • Publication number: 20140299810
    Abstract: A permanent magnet may include a Fe16N2 phase constitution.
    Type: Application
    Filed: August 17, 2012
    Publication date: October 9, 2014
    Applicant: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Jian-Ping Wang, Shihai He, Yanfeng Jiang
  • Publication number: 20130243699
    Abstract: The design of biodegradable magnetic nanoparticles for use in in-vivo biomedical applications. The particles can include Fe in combination with one or more of Mg, Zn, Si, C, N, and P atoms or other particles. The nanoparticles can be degraded in-vivo after usage. The nanoparticles can cease heating upon reaching a predetermined temperature or other value.
    Type: Application
    Filed: December 7, 2012
    Publication date: September 19, 2013
    Applicant: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Jian-Ping Wang, Ying Jing, Shihai He
  • Publication number: 20120181171
    Abstract: Nanoparticle deposition systems including one or more of: a hollow target of a material; at least one rotating magnet providing a magnetic field that controls movement of ions and crystallization of nanoparticles from released atoms; a nanoparticle collection device that collects crystallized nanoparticles on a substrate, wherein relative motion between the substrate and at least a target continuously expose new surface areas of the substrate to the crystallized nanoparticles; a hollow anode with a target at least partially inside the hollow anode; or a first nanoparticle source providing first nanoparticles of a first material and a second nanoparticle source providing second nanoparticles of a second material.
    Type: Application
    Filed: January 13, 2012
    Publication date: July 19, 2012
    Applicant: Regents of the University of Minnesota
    Inventors: Jian-Ping Wang, Shihai He