Patents by Inventor Shijian BEN

Shijian BEN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10942319
    Abstract: The present application provides an optical module, including a laser, a laser driving chip, and a lens component disposed above the laser and the laser driving chip, where an inner cavity wall of the lens component that faces towards the laser and the laser driving chip is provided with a transmitting lens; a surface of the transmitting lens and the inner cavity wall around the transmitting lens are coated with a reflective film; and there is no reflective film coated on a part or entire of a region, of the inner cavity wall of the lens unit, which is irradiated by a secondarily reflected laser light.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: March 9, 2021
    Assignee: HISENSE BROADBAND MULTIMEDIA TECHNOLOGIES CO., LTD.
    Inventors: Xuxia Liu, Shijian Ben
  • Publication number: 20200285004
    Abstract: The present application provides an optical module, including a laser, a laser driving chip, and a lens component disposed above the laser and the laser driving chip, where an inner cavity wall of the lens component that faces towards the laser and the laser driving chip is provided with a transmitting lens; a surface of the transmitting lens and the inner cavity wall around the transmitting lens are coated with a reflective film; and there is no reflective film coated on a part or entire of a region, of the inner cavity wall of the lens unit, which is irradiated by a secondarily reflected laser light.
    Type: Application
    Filed: August 19, 2019
    Publication date: September 10, 2020
    Applicant: HISENSE BROADBAND MULTIMEDIA TECHNOLOGIES CO., LTD.
    Inventors: Xuxia LIU, Shijian BEN
  • Patent number: 10624203
    Abstract: The disclosure discloses an optical module, and relates to the field of optic fiber communications. A circuit according to an embodiment of the disclosure includes: a chip, which includes at least one wiring side, and on which there are arranged first signal interface pads arranged parallel to the wiring side; a circuit board on which there are arranged a number of second signal interface pads corresponding to the first signal interface pads, wherein at least two of the distances between the respective second signal interface pads and the wiring side are different from each other; and signal wires configured to connect the corresponding first signal interface pads and second signal interface pads.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: April 14, 2020
    Assignees: Hisense Broadband Multimedia Technologies Co., Ltd., Hisense USA Corporation, Hisense International Co., Ltd.
    Inventors: Sigeng Yang, Shijian Ben, Jingsheng Xia, Yongliang Huang
  • Patent number: 10459180
    Abstract: The disclosure provides an optical module, including a housing, a circuit board and a light conducting structure; a portion of the light conducting structure is disposed in the housing, another portion of the light conducting structure juts out from the housing; the circuit board is provided with a light source, and the light conducting structure is configured to conduct light emitted by the light source to an outside of the housing. The optical conducting module in the optical module can conduct light emitted from the optical module to outside of the optical module. The optical module allows the state inside the optical module to be conducted to and displayed in the outside of the optical module with optical signals as propagation medium. The state inside the optical module can be directly learned from the outside of the optical module housing, thereby extending application scenarios of the optical module.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: October 29, 2019
    Assignees: HISENSE BROADBAND MULTIMEDIA TECHNOLOGIES CO., LTD., HISENSE BROADBAND MULTIMEDIA TECHNOLOGIES, LTD.
    Inventors: Sigeng Yang, Yinlong Liu, Yongliang Huang, Shijian Ben, Jingsheng Xia, Peng He, Haiqiang Xu, Shengwei Bo, Tengyue Li
  • Publication number: 20180314018
    Abstract: The disclosure provides an optical module, including a housing, a circuit board and a light conducting structure; a portion of the light conducting structure is disposed in the housing, another portion of the light conducting structure juts out from the housing; the circuit board is provided with a light source, and the light conducting structure is configured to conduct light emitted by the light source to an outside of the housing. The optical conducting module in the optical module can conduct light emitted from the optical module to outside of the optical module. The optical module allows the state inside the optical module to be conducted to and displayed in the outside of the optical module with optical signals as propagation medium. The state inside the optical module can be directly learned from the outside of the optical module housing, thereby extending application scenarios of the optical module.
    Type: Application
    Filed: April 24, 2018
    Publication date: November 1, 2018
    Inventors: SIGENG YANG, YINLONG LIU, YONGLIANG HUANG, SHIJIAN BEN, JINGSHENG XIA, PENG HE, HAIQIANG XU, SHENGWEI BO, TENGYUE LI
  • Publication number: 20180317315
    Abstract: The disclosure discloses an optical module, and relates to the field of optic fiber communications. A circuit according to an embodiment of the disclosure includes: a chip, which includes at least one wiring side, and on which there are arranged first signal interface pads arranged parallel to the wiring side; a circuit board on which there are arranged a number of second signal interface pads corresponding to the first signal interface pads, wherein at least two of the distances between the respective second signal interface pads and the wiring side are different from each other; and signal wires configured to connect the corresponding first signal interface pads and second signal interface pads.
    Type: Application
    Filed: July 6, 2018
    Publication date: November 1, 2018
    Inventors: Sigeng YANG, Shijian BEN, Jingsheng XIA, Yongliang HUANG
  • Patent number: 9983373
    Abstract: The disclosure provides an optical module, including a housing, a circuit board and a light conducting structure; a portion of the light conducting structure is disposed in the housing, another portion of the light conducting structure juts out from the housing; the circuit board is provided with a light source, and the light conducting structure is configured to conduct light emitted by the light source to an outside of the housing. The optical conducting module in the optical module can conduct light emitted from the optical module to outside of the optical module. The optical module allows the state inside the optical module to be conducted to and displayed in the outside of the optical module with optical signals as propagation medium. The state inside the optical module can be directly learned from the outside of the optical module housing, thereby extending application scenarios of the optical module.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: May 29, 2018
    Assignees: Hisense Broadband Multimedia Technologies Co., Ltd., Hisense Broadband Multimedia Technologies Ltd.
    Inventors: Sigeng Yang, Yinlong Liu, Yongliang Huang, Shijian Ben, Jingsheng Xia, Peng He, Haiqiang Xu, Shengwei Bo, Tengyue Li
  • Publication number: 20170363827
    Abstract: The disclosure provides an optical module, including a housing, a circuit board and a light conducting structure; a portion of the light conducting structure is disposed in the housing, another portion of the light conducting structure juts out from the housing; the circuit board is provided with a light source, and the light conducting structure is configured to conduct light emitted by the light source to an outside of the housing. The optical conducting module in the optical module can conduct light emitted from the optical module to outside of the optical module. The optical module allows the state inside the optical module to be conducted to and displayed in the outside of the optical module with optical signals as propagation medium. The state inside the optical module can be directly learned from the outside of the optical module housing, thereby extending application scenarios of the optical module.
    Type: Application
    Filed: December 30, 2016
    Publication date: December 21, 2017
    Inventors: SIGENG YANG, YINLONG LIU, YONGLIANG HUANG, SHIJIAN BEN, JINGSHENG XIA, PENG HE, HAIQIANG XU, SHENGWEI BO, TENGYUE LI
  • Publication number: 20170208678
    Abstract: The disclosure discloses an optical module, and relates to the field of optic fiber communications. A circuit according to an embodiment of the disclosure includes: a chip, which includes at least one wiring side, and on which there are arranged first signal interface pads arranged parallel to the wiring side; a circuit board on which there are arranged a number of second signal interface pads corresponding to the first signal interface pads, wherein at least two of the distances between the respective second signal interface pads and the wiring side are different from each other; and signal wires configured to connect the corresponding first signal interface pads and second signal interface pads.
    Type: Application
    Filed: September 19, 2016
    Publication date: July 20, 2017
    Inventors: Sigeng YANG, Shijian BEN, Jingsheng XIA, Yongliang HUANG
  • Patent number: 9515738
    Abstract: The embodiments of this disclosure provide an optical module, which expands the network bandwidth, eases a problem on dynamic bandwidth allocation. The optical module comprises an optical transceiver assembly and a control circuit, wherein the optical transceiver assembly comprises a first optical emitter and a second optical emitter; the control circuit is configured to control the first optical emitter to generate an optical signal of a first waveband, and the first optical emitter is configured to emit the optical signal of the first waveband to a transmission optical fiber; or, the control circuit is configured to control the second optical emitter to generate an optical signal of a second waveband, and the second optical emitter is configured to emit the optical signal of the second waveband to the transmission optical fiber. This disclosure is applied to an optical module of a wavelength division multiplex passive optical network.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: December 6, 2016
    Assignees: HISENSE BROADBAND MULTIMEDIA TECHNOLOGIES CO., LTD., HISENSE USA CORPORATION
    Inventors: Sigeng Yang, Qisheng Zhao, Ming Li, Lei Lu, Dengshan Xue, Shijian Ben, Hongping Yan
  • Publication number: 20160142145
    Abstract: The embodiments of this disclosure provide an optical module, which expands the network bandwidth, eases a problem on dynamic bandwidth allocation. The optical module comprises an optical transceiver assembly and a control circuit, wherein the optical transceiver assembly comprises a first optical emitter and a second optical emitter; the control circuit is configured to control the first optical emitter to generate an optical signal of a first waveband, and the first optical emitter is configured to emit the optical signal of the first waveband to a transmission optical fiber; or, the control circuit is configured to control the second optical emitter to generate an optical signal of a second waveband, and the second optical emitter is configured to emit the optical signal of the second waveband to the transmission optical fiber. This disclosure is applied to an optical module of a wavelength division multiplex passive optical network.
    Type: Application
    Filed: March 31, 2014
    Publication date: May 19, 2016
    Applicants: Hisense USA Corporation, Hisense Broadband MultiMedia Technologies Co., Ltd.
    Inventors: Sigeng YANG, Qisheng ZHAO, Ming LI, Lei LU, Dengshan XUE, Shijian BEN, Hongping YAN