Patents by Inventor Shilpa MANJURE

Shilpa MANJURE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11905407
    Abstract: Polylactide (PLA) parts can be crystallized via two procedures. In the first procedure, i.e. a 2-step post-mold annealing process, the complete crystallization of PLA parts can be done after molding in a secondary operation called as post-mold annealing to make higher heat-resistant PLA parts. There are limitations to this 2-step operation, namely, a) warpage of parts with complex geometries, and b) scaling up higher production volume times. In the second procedure, i.e. 1-step in-mold annealing process, the complete crystallization of PLA parts can be done in the mold itself by holding the temperature of the mold at the crystallization temperature of PLA which is about 100° C. The 1-step in-mold annealing process using a masterbatch blended with neat PLA results in a highly crystalline article produced in a significantly lower cycle time.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: February 20, 2024
    Assignee: Northern Technologies International Corporation
    Inventors: Shilpa Manjure, Nagaraj Kuppusamy, Matthew Lundblad
  • Patent number: 11485852
    Abstract: The notched Izod impact toughness and tensile elongation of poly(lactic acid) (PLA)-homopolymers are increased by about 2 to about 4 times by blending therewith a PLA-copolymer having a difunctional flexible middle segment such as a polysiloxane or a polyether from about 0.6 wt. % to about 20 wt. %. The PLA-homopolymer-PLA-copolymer blend having a difunctional flexible polymer from about 0.5 wt. % to about 10 wt. % is thermally annealed to provide impact toughness of at least about 5 kJ/m2 and tensile elongation of greater than 12%. This exceptional improvement observed in the PLA blend is a synergistic effect of the addition of the difunctional flexible polymer of the copolymer and thermal annealing. The improvement observed in the mechanical properties with high PLA homopolymer content above about 90 to about 98 wt. % is unusual and results in an increased scope of molding and thermoforming applications.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: November 1, 2022
    Assignee: Northern Technologies International Corporation
    Inventors: Preetam Giri, Shilpa Manjure, Sayli Bote
  • Publication number: 20220204755
    Abstract: Polylactide (PLA) parts can be crystallized via two procedures. In the first procedure, i.e. a 2-step post-mold annealing process, the complete crystallization of PLA parts can be done after molding in a secondary operation called as post-mold annealing to make higher heat-resistant PLA parts. There are limitations to this 2-step operation, namely, a) warpage of parts with complex geometries, and b) scaling up higher production volume times. In the second procedure, i.e. 1-step in-mold annealing process, the complete crystallization of PLA parts can be done in the mold itself by holding the temperature of the mold at the crystallization temperature of PLA which is about 100° C. The 1-step in-mold annealing process using a masterbatch blended with neat PLA results in a highly crystalline article produced in a significantly lower cycle time.
    Type: Application
    Filed: May 13, 2020
    Publication date: June 30, 2022
    Inventors: Shilpa MANJURE, Nagaraj KUPPUSAMY, Matthew LUNDBLAD
  • Publication number: 20210277228
    Abstract: The invention relates to a biodegradable and compostable blend of polylactic acid, a compostable polyester with or without carbon based biocontent, polyethylene glycol, and optionally an inorganic talc filler that have greatly increased elongation, flexibility, and tensile toughness as measured by tensile test ASTM D638-10. These blends of PLA with 5-30% of said polyester, about 10% PEG, and about 5% of an inorganic talc filler unexpectedly increased the elongation to 750+% for molded test bars. Additionally, 4 mil films showed a max tear strength of about 1200 gms (in MD) and 900 gms (in TD) measured by ASTM D1922-09 while maintaining other preferable properties.
    Type: Application
    Filed: August 7, 2018
    Publication date: September 9, 2021
    Inventors: Shilpa MANJURE, Matthew LUNDBLAD
  • Publication number: 20210253849
    Abstract: The notched Izod impact toughness and tensile elongation of poly(lactic acid) (PLA)-homopolymers are increased by about 2 to about 4 times by blending therewith a PLA-copolymer having a difunctional flexible middle segment such as a polysiloxane or a polyether from about 0.6 wt. % to about 20 wt. %. The PLA-homopolymer-PLA-copolymer blend having a difunctional flexible polymer from about 0.5 wt. % to about 10 wt. % is thermally annealed to provide impact toughness of at least about 5 kJ/m2 and tensile elongation of greater than 12%. This exceptional improvement observed in the PLA blend is a synergistic effect of the addition of the difunctional flexible polymer of the copolymer and thermal annealing. The improvement observed in the mechanical properties with high PLA homopolymer content above about 90 to about 98 wt. % is unusual and results in an increased scope of molding and thermoforming applications.
    Type: Application
    Filed: February 18, 2020
    Publication date: August 19, 2021
    Inventors: Preetam GIRI, Shilpa MANJURE, Sayli BOTE