Patents by Inventor Shimon Levi

Shimon Levi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11651509
    Abstract: A method for process control of a semiconductor structure fabricated by a series of fabrication steps, the method comprising obtaining an image of the semiconductor structure indicative of at least two individual fabrication steps; wherein the image is generated by scanning the semiconductor structure with a charged particle beam and collecting signals emanating from the semiconductor structure; and processing, by a hardware processor, the image to determining a parameter of the semiconductor structure, wherein processing includes measuring step/s from among the fabrication steps as an individual feature.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: May 16, 2023
    Assignee: Applied Materials Israel Ltd.
    Inventors: Roman Kris, Roi Meir, Sahar Levin, Ishai Schwarzband, Grigory Klebanov, Shimon Levi, Efrat Noifeld, Hiroshi Miroku, Taku Yoshizawa, Kasturi Saha, Sharon Duvdevani-Bar, Vadim Vereschagin
  • Patent number: 11301983
    Abstract: An improved technique for determining height difference in patterns provided on semiconductor wafers uses real measurements (e.g., measurements from SEM images) and a height difference determination model. In one version of the model, a measurable variable of the model is expressed in terms of a function of a change in depth of shadow (i.e. relative brightness), wherein the depth of shadow depends on the height difference as well as width difference between two features on a semiconductor wafer. In another version of the model, the measurable variable is expressed in terms of a function of a change of a measured distance between two characteristic points on the real image of a periodic structure with respect to a change in a tilt angle of a scanning electron beam.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: April 12, 2022
    Assignee: Applied Materials Israel Ltd.
    Inventors: Ishai Schwarzband, Yan Avniel, Sergey Khristo, Mor Baram, Shimon Levi, Doron Girmonsky, Roman Kris
  • Publication number: 20210383529
    Abstract: A method for process control of a semiconductor structure fabricated by a series of fabrication steps, the method comprising obtaining an image of the semiconductor structure indicative of at least two individual fabrication steps; wherein the image is generated by scanning the semiconductor structure with a charged particle beam and collecting signals emanating from the semiconductor structure; and processing, by a hardware processor, the image to determining a parameter of the semiconductor structure, wherein processing includes measuring step/s from among the fabrication steps as an individual feature.
    Type: Application
    Filed: October 31, 2019
    Publication date: December 9, 2021
    Inventors: Roman KRIS, Roi MEIR, Sahar LEVIN, Ishai SCHWARZBAND, Grigory KLEBANOV, Shimon LEVI, Efrat NOIFELD, Hiroshi MIROKU, Taku YOSHIZAWA, Kasturi SAHA, Sharon DUVDEVANI-BAR, Vadim VERESCHAGIN
  • Publication number: 20200380668
    Abstract: An improved technique for determining height difference in patterns provided on semiconductor wafers uses real measurements (e.g., measurements from SEM images) and a height difference determination model. In one version of the model, a measurable variable of the model is expressed in terms of a function of a change in depth of shadow (i.e. relative brightness), wherein the depth of shadow depends on the height difference as well as width difference between two features on a semiconductor wafer. In another version of the model, the measurable variable is expressed in terms of a function of a change of a measured distance between two characteristic points on the real image of a periodic structure with respect to a change in a tilt angle of a scanning electron beam.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Inventors: Ishai Schwarzband, Yan Avniel, Sergey Khristo, Mor Baram, Shimon Levi, Doron Girmonsky, Roman Kris
  • Patent number: 10748272
    Abstract: An improved technique for determining height difference in patterns provided on semiconductor wafers uses real measurements (e.g., measurements from SEM images) and a height difference determination model. In one version of the model, a measurable variable of the model is expressed in terms of a function of a change in depth of shadow (i.e. relative brightness), wherein the depth of shadow depends on the height difference as well as width difference between two features on a semiconductor wafer. In another version of the model, the measurable variable is expressed in terms of a function of a change of a measured distance between two characteristic points on the real image of a periodic structure with respect to a change in a tilt angle of a scanning electron beam.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: August 18, 2020
    Assignee: APPLIED MATERIALS ISRAEL LTD.
    Inventors: Ishai Schwarzband, Yan Avniel, Sergey Khristo, Mor Baram, Shimon Levi, Doron Girmonsky, Roman Kris
  • Patent number: 10731979
    Abstract: A method for monitoring a first nanometric structure formed by a multiple patterning process, the method may include performing a first plurality of measurements to provide a first plurality of measurement results; wherein the performing of the first plurality of measurements comprises illuminating first plurality of locations of a first sidewall of the first nanometric structure by oblique charged particle beams of different tilt angles; and processing, by a hardware processor, the first plurality of measurement results to determine a first attribute of the first nanometric structure.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: August 4, 2020
    Assignee: Applied Materials Israel Ltd.
    Inventors: Shimon Levi, Ishai Schwarzband, Roman Kris
  • Publication number: 20190219390
    Abstract: A method for monitoring a first nanometric structure formed by a multiple patterning process, the method may include performing a first plurality of measurements to provide a first plurality of measurement results; wherein the performing of the first plurality of measurements comprises illuminating first plurality of locations of a first sidewall of the first nanometric structure by oblique charged particle beams of different tilt angles; and processing, by a hardware processor, the first plurality of measurement results to determine a first attribute of the first nanometric structure.
    Type: Application
    Filed: January 12, 2018
    Publication date: July 18, 2019
    Inventors: Shimon LEVI, Ishai SCHWARZBAND, Roman KRIS
  • Patent number: 10354376
    Abstract: A method for determining overlay between layers of a multilayer structure may include obtaining a given image representing the multilayer structure, obtaining expected images for layers of the multilayer structure, providing a combined expected image of the multilayer structure as a combination of the expected images of said layers, performing registration of the given image against the combined expected image, and providing segmentation of the given image, thereby producing a segmented image, and maps of the layers of said multilayered structure. The method may further include determining overlay between any two selected layers of the multilayer structure by processing the maps of the two selected layers together with the expected images of said two selected layers.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: July 16, 2019
    Assignee: APPLIED MATERIALS ISRAEL LTD.
    Inventors: Yakov Weinberg, Ishai Schwarzband, Roman Kris, Itay Zauer, Ran Goldman, Olga Novak, Dhananjay Singh Rathore, Ofer Adan, Shimon Levi
  • Publication number: 20180336675
    Abstract: An improved technique for determining height difference in patterns provided on semiconductor wafers uses real measurements (e.g., measurements from SEM images) and a height difference determination model. In one version of the model, a measurable variable of the model is expressed in terms of a function of a change in depth of shadow (i.e. relative brightness), wherein the depth of shadow depends on the height difference as well as width difference between two features on a semiconductor wafer. In another version of the model, the measurable variable is expressed in terms of a function of a change of a measured distance between two characteristic points on the real image of a periodic structure with respect to a change in a tilt angle of a scanning electron beam.
    Type: Application
    Filed: May 17, 2018
    Publication date: November 22, 2018
    Inventors: Ishai SCHWARZBAND, Yan AVNIEL, Sergey KHRISTO, Mor BARAM, Shimon LEVI, Doron GIRMONSKY, Roman KRIS
  • Publication number: 20180268539
    Abstract: A method for determining overlay between layers of a multilayer structure may include obtaining a given image representing the multilayer structure, obtaining expected images for layers of the multilayer structure, providing a combined expected image of the multilayer structure as a combination of the expected images of said layers, performing registration of the given image against the combined expected image, and providing segmentation of the given image, thereby producing a segmented image, and maps of the layers of said multilayered structure. The method may further include determining overlay between any two selected layers of the multilayer structure by processing the maps of the two selected layers together with the expected images of said two selected layers.
    Type: Application
    Filed: March 12, 2018
    Publication date: September 20, 2018
    Inventors: Yakov WEINBERG, Ishai SCHWARZBAND, Roman KRIS, Itay ZAUER, Ran GOLDMAN, Olga NOVAK, Dhananjay Singh RATHORE, Ofer ADAN, Shimon LEVI
  • Patent number: 9916652
    Abstract: A method for determining overlay between layers of a multilayer structure may include obtaining a given image representing the multilayer structure, obtaining expected images for layers of the multilayer structure, providing a combined expected image of the multilayer structure as a combination of the expected images of said layers, performing registration of the given image against the combined expected image, and providing segmentation of the given image, thereby producing a segmented image, and maps of the layers of said multilayered structure. The method may further include determining overlay between any two selected layers of the multilayer structure by processing the maps of the two selected layers together with the expected images of said two selected layers.
    Type: Grant
    Filed: December 26, 2016
    Date of Patent: March 13, 2018
    Assignee: Applied Materials Israel Ltd.
    Inventors: Yakov Weinberg, Ishai Schwarzband, Roman Kris, Itay Zauer, Ran Goldman, Olga Novak, Dhananjay Singh Rathore, Ofer Adan, Shimon Levi
  • Publication number: 20170243343
    Abstract: A method for determining overlay between layers of a multilayer structure may include obtaining a given image representing the multilayer structure, obtaining expected images for layers of the multilayer structure, providing a combined expected image of the multilayer structure as a combination of the expected images of said layers, performing registration of the given image against the combined expected image, and providing segmentation of the given image, thereby producing a segmented image, and maps of the layers of said multilayered structure. The method may further include determining overlay between any two selected layers of the multilayer structure by processing the maps of the two selected layers together with the expected images of said two selected layers.
    Type: Application
    Filed: December 26, 2016
    Publication date: August 24, 2017
    Inventors: Yakov WEINBERG, Ishai SCHWARZBAND, Roman KRIS, Itay ZAUER, Ran GOLDMAN, Olga NOVAK, Dhananjay Singh RATHORE, Ofer ADAN, Shimon LEVI
  • Publication number: 20170018066
    Abstract: A method for determining overlay between layers of a multilayer structure may include obtaining a given image representing the multilayer structure, obtaining expected images for layers of the multilayer structure, providing a combined expected image of the multilayer structure as a combination of the expected images of said layers, performing registration of the given image against the combined expected image, and providing segmentation of the given image, thereby producing a segmented image, and maps of the layers of said multilayered structure. The method may further include determining overlay between any two selected layers of the multilayer structure by processing the maps of the two selected layers together with the expected images of said two selected layers.
    Type: Application
    Filed: July 13, 2015
    Publication date: January 19, 2017
    Inventors: Yakov WEINBERG, Ishai SCHWARZBAND, Roman KRIS, Itay ZAUER, Ran GOLDMAN, Olga NOVAK, Dhananjay Singh RATHORE, Ofer ADAN, Shimon LEVI
  • Patent number: 9530199
    Abstract: A method for determining overlay between layers of a multilayer structure may include obtaining a given image representing the multilayer structure, obtaining expected images for layers of the multilayer structure, providing a combined expected image of the multilayer structure as a combination of the expected images of said layers, performing registration of the given image against the combined expected image, and providing segmentation of the given image, thereby producing a segmented image, and maps of the layers of said multilayered structure. The method may further include determining overlay between any two selected layers of the multilayer structure by processing the maps of the two selected layers together with the expected images of said two selected layers.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: December 27, 2016
    Assignee: Applied Materials Israel Ltd
    Inventors: Yakov Weinberg, Ishai Schwarzband, Roman Kris, Itay Zauer, Ran Goldman, Olga Novak, Dhananjay Singh Rathore, Ofer Adan, Shimon Levi
  • Patent number: 9165376
    Abstract: A system, a non-transitory computer readable medium and a method for detecting a parameter of a pattern, the method comprises: obtaining an image of the pattern; wherein the image is generated by scanning the pattern with a charged particle beam; processing the image to provide an edge enhanced image; wherein the processing comprises computing an aggregate energy of first n spectral components of the image, wherein n exceeds two; and further processing the edge enhanced image and determining a parameter of the pattern.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 20, 2015
    Assignee: Applied Materials Israel Ltd.
    Inventors: Ishai Schwartzband, Roman Kris, Shimon Levi
  • Patent number: 7990546
    Abstract: A method for characterizing a surface of a sample object, the method including dividing the surface into pixels which are characterized by a parameter variation, and defining blocks of the surface as respective groups of the pixels. The method further includes irradiating the pixels in multiple scans over the surface with radiation having different, respective types of polarization, and detecting returning radiation from the pixels in response to each of the scans. For each scan, respective block signatures of the blocks are constructed, in response to the returning radiation from the group of pixels in each block. Also for each scan, a block signature variation using the respective block signatures of the blocks is determined. In response to the block signature variation, one or more of the types of polarization for use in subsequent examination of a test object are selected.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: August 2, 2011
    Assignee: Applied Materials Israel, Ltd.
    Inventors: Jeong Ho Yeo, Efrat Rosenman, Erez Ravid, Doron Meshulach, Gadi Greenberg, Kobi Kan, Yehuda Cohen, Shimon Levi
  • Publication number: 20090021749
    Abstract: A method for characterizing a surface of a sample object, the method including dividing the surface into pixels which are characterized by a parameter variation, and defining blocks of the surface as respective groups of the pixels. The method further includes irradiating the pixels in multiple scans over the surface with radiation having different, respective types of polarization, and detecting returning radiation from the pixels in response to each of the scans. For each scan, respective block signatures of the blocks are constructed, in response to the returning radiation from the group of pixels in each block. Also for each scan, a block signature variation using the respective block signatures of the blocks is determined. In response to the block signature variation, one or more of the types of polarization for use in subsequent examination of a test object are selected.
    Type: Application
    Filed: July 15, 2008
    Publication date: January 22, 2009
    Inventors: Jeong Ho Yeo, Efrat Rosenman, Erez Ravid, Doron Meshulach, Gadi Greenberg, Kobi Kan, Yehuda Cohen, Shimon Levi
  • Patent number: 5628667
    Abstract: In its preferred embodiment, the sinuous toy is a mechanical snake with a plurality of body elements. The body elements are each pivoted with respect to each adjacent body element on a vertical axis. Each body element has a large circular opening therethrough. The body elements are configured to be more narrow laterally away from the pivot axis so that the body elements can swing with respect to each other to represent sinuous snake motion. A helical actuator coil extends through the interior opening of the plurality of body elements. The outside swept diameter of the helical coil actuator is slightly larger than the interior openings through the body elements so that the body elements rise and fall in a direction generally parallel to the pivot axes between the body elements. Means is provided to supply tension between the head and tail of the sinuous toy so that the body elements are thrust sideways to have twice as much sideways motion as the interior diameter of the body elements.
    Type: Grant
    Filed: February 26, 1996
    Date of Patent: May 13, 1997
    Inventor: Shimon Levi