Patents by Inventor Shimshon Gottesfeld

Shimshon Gottesfeld has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130130136
    Abstract: Embodiments of the invention provide an ammonia operated fuel cell system including an alkaline membrane fuel cell (AMFC) having an anode, and an ammonia thermal cracker including a combustion chamber, the cracker being in gas communication with an ammonia source, and configured to provide a supply of H2 directly to the AMFC anode.
    Type: Application
    Filed: June 21, 2012
    Publication date: May 23, 2013
    Inventors: Miles Page, Dario Dekel, Ziv Gottesfeld, Shimshon Gottesfeld
  • Publication number: 20120321973
    Abstract: A device to produce electricity by a chemical reaction without the addition of liquid electrolyte comprises an anode electrode, a polymer membrane electrolyte fabricated to conduct hydroxyl (OH—) ions, the membrane being in physical contact with the anode electrode on a first side of the membrane, and a cathode electrode in physical contact with a second side of the membrane. The anode electrode and cathode electrode contain catalysts, and the catalysts are constructed substantially entirely from non-precious metal catalysts. Water may be transferred to the cathode side of the membrane from an external source of water.
    Type: Application
    Filed: August 29, 2012
    Publication date: December 20, 2012
    Applicant: CellEra, Inc.
    Inventors: Shimshon Gottesfeld, Dario Dekel, Ziv Gottesfeld, David Stanislav Simakov
  • Publication number: 20120321991
    Abstract: A device to produce electricity by a chemical reaction without the addition of liquid electrolyte comprises an anode electrode, a polymer membrane electrolyte fabricated to conduct hydroxyl (OH—) ions, the membrane being in physical contact with the anode electrode on a first side of the membrane, and a cathode electrode in physical contact with a second side of the membrane. The anode electrode and cathode electrode contain catalysts, and the catalysts are constructed substantially entirely from non-precious metal catalysts. Water may be transferred to the cathode side of the membrane from an external source of water.
    Type: Application
    Filed: August 29, 2012
    Publication date: December 20, 2012
    Applicant: CellEra, Inc.
    Inventors: Shimshon Gottesfeld, Dario Dekel, Ziv Gottesfeld, David Stanislav Simakov
  • Patent number: 8304368
    Abstract: Alkaline membrane fuel cells designed with silver cathode catalysts include a catalyst layer comprising silver metal nano-particles and an anion-conducting ionomer. The silver nano-particles are mixed with a solution of the ionomer to form a catalyst ink that is applied to an alkaline membrane to form an ultra-thin cathode catalyst layer on the membrane surface.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: November 6, 2012
    Assignee: Cellera, Inc.
    Inventors: Shimshon Gottesfeld, Dario Dekel, David Stanislav Simakov
  • Patent number: 8257872
    Abstract: A device to produce electricity by a chemical reaction without the addition of liquid electrolyte comprises an anode electrode, a polymer membrane electrolyte fabricated to conduct hydroxyl (OH—) ions, the membrane being in physical contact with the anode electrode on a first side of the membrane, and a cathode electrode in physical contact with a second side of the membrane. The anode electrode and cathode electrode contain catalysts, and the catalysts are constructed substantially entirely from non-precious metal catalysts. Water may be transferred to the cathode side of the membrane from an external source of water.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: September 4, 2012
    Assignee: CellEra, Inc.
    Inventors: Shimshon Gottesfeld, Dario Dekel, Ziv Gottesfeld, Stanislav David Simakov
  • Publication number: 20110212370
    Abstract: An air CO2 filtration assembly or system is provided that includes CO2 filters or traps designed and configured with a limited, but high capacity, volume to maximize filtration/absorption of CO2 from an air stream supplied to an alkaline fuel cell to thereby minimize the CO2 level in the air stream fed into the fuel cell cathode. The CO2 filters or traps include at least one thermally regenerative CO2 chemical filter or trap arranged in a tandem configuration with a strongly bonding CO2 chemical filter or trap. The combination of the two types of filters or traps sequentially filter/absorb CO2 from the air stream and reduce the level of CO2 in the air stream fed into the cathode. The air CO2 filtration assembly or system may be used in conjunction with electrochemical purging of the alkaline fuel cell that enables removal of CO2 from the fuel cell by anodic decomposition of accumulated carbonate ions in the fuel cell anode and release of CO2 through the anode exhaust stream.
    Type: Application
    Filed: August 24, 2010
    Publication date: September 1, 2011
    Inventor: Shimshon Gottesfeld
  • Publication number: 20110151342
    Abstract: A device to produce electricity by a chemical reaction without the addition of liquid electrolyte comprises an anode electrode, a polymer membrane electrolyte fabricated to conduct hydroxyl (OH—) ions, the membrane being in physical contact with the anode electrode on a first side of the membrane, and a cathode electrode in physical contact with a second side of the membrane. The anode electrode and cathode electrode contain catalysts, and the catalysts are constructed substantially entirely from non-precious metal catalysts. Water may be transferred to the cathode side of the membrane from an external source of water.
    Type: Application
    Filed: February 3, 2011
    Publication date: June 23, 2011
    Inventors: Shimshon Gottesfeld, Dario Dekel, Ziv Gottesfeld, David Stanislav Simakov
  • Patent number: 7943258
    Abstract: A device to produce electricity by a chemical reaction without the addition of liquid electrolyte comprises an anode electrode, a polymer membrane electrolyte fabricated to conduct hydroxyl (OH—) ions, the membrane being in physical contact with the anode electrode on a first side of the membrane, and a cathode electrode in physical contact with a second side of the membrane. The anode electrode and cathode electrode contain catalysts, and the catalysts are constructed substantially entirely from non-precious metal catalysts. Water may be transferred to the cathode side of the membrane from an external source of water.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: May 17, 2011
    Assignee: CellEra, Inc.
    Inventors: Shimshon Gottesfeld, Dario Dekel, Ziv Gottesfeld, Stanislav David Simakov
  • Publication number: 20100216052
    Abstract: Alkaline membrane fuel cells designed with silver cathode catalysts include a catalyst layer comprising silver metal nano-particles and an anion-conducting ionomer. The silver nano-particles are mixed with a solution of the ionomer to form a catalyst ink that is applied to an alkaline membrane to form an ultra-thin cathode catalyst layer on the membrane surface.
    Type: Application
    Filed: February 23, 2010
    Publication date: August 26, 2010
    Applicant: Cellera, Inc.
    Inventors: Shimshon Gottesfeld, Dario Dekel, David Stanislav Simakov
  • Patent number: 7638215
    Abstract: A simplified direct oxidation fuel cell system is provided. The fuel cell is constructed in such a manner that fuel is added to the cell anode as it is consumed and water is evaporated off at cell cathode so that there is no need for recirculation of unreacted fuel at the cell anode or water at the cell cathode. In addition, carbon dioxide generated from the anodic reaction is passively vented out of the system by using a CO2 gas permeable membrane material integrated as part of the anode chamber construction. It is thus possible that, the CO2 separation from the anode fluid occurs without the recirculation of the anode fluid outside the anode chamber. The passive system in which fuel is added as it is consumed and CO2 separated, both without pumping, ultimately will increase net power provided to the load due to low parasitic losses.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: December 29, 2009
    Assignee: MTI Microfuel Cells Inc.
    Inventors: Xiaoming Ren, Juan J. Becerra, Gerhard Beckmann, Eric J. Brown, Michael S. DeFilippis, Jay K. Neutzler, Shimshon Gottesfeld
  • Patent number: 7541109
    Abstract: Passive water management techniques are provided in an air-breathing direct oxidation fuel cell system. A highly hydrophobic component with sub-micrometer wide pores is laminated to the catalyzed membrane electrolyte on the cathode side. This component blocks liquid water from traveling out of the cathode and instead causes the water to be driven through the polymer membrane electrolyte to the cell anode. The air-breathing direct oxidation fuel cell also includes a layer of cathode backing and additional cathode filter components on an exterior aspect of the cell cathode which lessen the water vapor escape rate from the cell cathode. The combination of the well laminated hydrophobic microporous layer, the thicker backing and the added filter layer, together defines a cathode structure of unique water management capacity, that enables to operate a DMFC with direct, controlled rate supply of neat (100%) methanol, without the need for any external supply or pumping of water.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: June 2, 2009
    Assignee: MTI MicroFuel Cells, Inc.
    Inventors: Xiaoming Ren, Frank W. Kovacs, Kevin J. Shufon, Shimshon Gottesfeld
  • Patent number: 7510794
    Abstract: A conformable fuel cell is provided which includes a basic structure that provides flexibility while providing a high compression along the active surface of the fuel cell's membrane electrode assembly, which can be achieved by an injection-molded frame. A suitable fuel is delivered to the anode aspect of the fuel cell. Effective water management could also be provided by appropriate diffusion layers. The fuel cell can be contour-molded to a desired shape, or can be constructed of an array of flexibly connected individual fuel cells that overall have a curvilinear shape, or can be constructed as a pliable fuel cell that can be incorporated into an application device or an article of clothing.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: March 31, 2009
    Assignee: MTI MicroFuel Cells, Inc.
    Inventors: Shimshon Gottesfeld, William P. Acker, Robert S. Hirsch
  • Patent number: 7407721
    Abstract: A passive direct oxidation fuel cell system, which uses a high concentration fuel such as neat methanol as a direct feed to an anode aspect of the fuel cell, is provided. The fuel cell includes a passive water management capability, achieved by the combined functions of controlled fuel dosing, effective push back of liquid water from the cathode through the membrane electrolyte by a hydrophobic microporous layer well bonded to the cathode catalyst and the use of a thin ionomeric membrane. The rate of fuel delivery is controlled by a passive fuel transport barrier. Carbon dioxide management techniques are also provided.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: August 5, 2008
    Assignee: MTI MicroFuel Cells, Inc.
    Inventors: Xiaoming Ren, Juan J. Becerra, Robert S. Hirsch, Shimshon Gottesfeld, Frank W. Kovacs, Kevin J. Shufon
  • Publication number: 20080032182
    Abstract: Passive water management techniques are provided in an air-breathing direct oxidation fuel cell system. A highly hydrophobic component with sub-micrometer wide pores is laminated to the catalyzed membrane electrolyte on the cathode side. This component blocks liquid water from traveling out of the cathode and instead causes the water to be driven through the polymer membrane electrolyte to the cell anode. The air-breathing direct oxidation fuel cell also includes a layer of cathode backing and additional cathode filter components on an exterior aspect of the cell cathode which lessen the water vapor escape rate from the cell cathode. The combination of the well laminated hydrophobic microporous layer, the thicker backing and the added filter layer, together defines a cathode structure of unique water management capacity, that enables to operate a DMFC with direct, controlled rate supply of neat (100%) methanol, without the need for any external supply or pumping of water.
    Type: Application
    Filed: October 16, 2007
    Publication date: February 7, 2008
    Applicant: MTI MicroFuel Cells Inc.
    Inventors: Xiaoming Ren, Frank Kovacs, Kevin Shufon, Shimshon Gottesfeld
  • Patent number: 7282293
    Abstract: Passive water management techniques are provided in an air-breathing direct oxidation fuel cell system. A highly hydrophobic component with sub-micrometer wide pores is laminated to the catalyzed membrane electrolyte on the cathode side. This component blocks liquid water from traveling out of the cathode and instead causes the water to be driven through the polymer membrane electrolyte to the cell anode. The air-breathing direct oxidation fuel cell also includes a layer of cathode backing and additional cathode filter components on an exterior aspect of the cell cathode which lessen the water vapor escape rate from the cell cathode. The combination of the well laminated hydrophobic microporous layer, the thicker backing and the added filter layer, together defines a cathode structure of unique water management capacity, that enables to operate a DMFC with direct, controlled rate supply of neat (100%) methanol, without the need for any external supply or pumping of water.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: October 16, 2007
    Assignee: MTI MicroFuel Cells Inc.
    Inventors: Xiaoming Ren, Frank W. Kovacs, Kevin J. Shufon, Shimshon Gottesfeld
  • Patent number: 7179501
    Abstract: A fuel cell diffusion layer providing a preferential path by which liquid reactants or byproducts may be supplied to or removed from a direct oxidation fuel cell is described. The modified diffusion layer will be typically on the cathode side of the fuel cell and its use is to eliminate or minimize flooding of the cathode diffusion layer area, which is a performance limiting condition in direct methanol fuel cells. In accordance with one embodiment of the invention, the diffusion layer includes a substrate that is coated with a microporous layer. A pattern may be embossed into the diffusion layer, to create preferential flow paths by which water will travel and thereby be removed from the cathode catalyst area. This avoids cathode flooding and avoids build up of potentially destructive pressure by possible cathodic water accumulation.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: February 20, 2007
    Assignee: MTI MicroFuel Cells Inc.
    Inventors: Gerhard Beckmann, Xiaoming Ren, Paul F. Mutolo, Frank W. Kovacs, Shimshon Gottesfeld
  • Patent number: 7083708
    Abstract: Oxygen-consuming zero gap chlor-alkali cell was configured to minimize peroxide formation. The cell included an ion-exchange membrane that divided the cell into an anode chamber including an anode and a cathode chamber including an oxygen gas diffusion cathode. The cathode included a single-piece of electrically conducting graphitized carbon cloth. Catalyst and polytetrafluoroethylene were attached to only one side of the cloth. When the cathode was positioned against the cation exchange membrane with the catalyst side away from the membrane, electrolysis of sodium chloride to chlorine and caustic (sodium hydroxide) proceeded with minimal peroxide formation.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: August 1, 2006
    Assignee: The Regents of the University of California
    Inventors: Jerzy B. Chlistunoff, Ludwig Lipp, Shimshon Gottesfeld
  • Publication number: 20060068271
    Abstract: A simplified direct oxidation fuel cell system is disclosed. The fuel cell is constructed in such a manner that fuel is added to the cell anode as it is consumed and water is evaporated off at cell cathode so that there is no need for recirculation of unreacted fuel at the cell anode or water at the cell cathode. In addition, carbon dioxide generated from the anodic reaction is passively vented out of the system by using a CO2 gas permeable membrane material integrated as part of the anode chamber construction. It is thus possible that, the CO2 separation from the anode fluid occurs without the recirculation of the anode fluid outside the anode chamber. In one embodiment, the simplified direct oxidation fuel cell includes a gas permeable, liquid impermeable membrane placed in close proximity to the anode to perform the carbon dioxide separation.
    Type: Application
    Filed: November 8, 2005
    Publication date: March 30, 2006
    Inventors: Xiaoming Ren, John Becerra, Gerhard Beckmann, Eric Brown, Michael DeFilippis, Jay Neutzler, Shimshon Gottesfeld
  • Patent number: 6991865
    Abstract: Apparatus and methods for regulating methanol concentration in a direct methanol fuel cell system without the need for a methanol concentration sensor. One or more operating characteristics of the fuel cell, such as the potential across the load, open circuit potential, potential at the anode proximate to the end of the fuel flow path or short circuit current of the fuel cell, are used to actively control the methanol concentration.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: January 31, 2006
    Assignee: MTI MicroFuel Cells Inc.
    Inventors: William P. Acker, Michael S. Adler, Shimshon Gottesfeld
  • Patent number: 6986961
    Abstract: A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: January 17, 2006
    Assignee: The Regents of the University of California
    Inventors: Xiaoming Ren, Shimshon Gottesfeld