Patents by Inventor Shin-Ae Maeng

Shin-Ae Maeng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9017956
    Abstract: Provided herein are uses of genes for HOG, Ras and cAMP signal transduction pathways to treat fungal infection. To regulate the HOG pathway of Cryptococcus neoformans, roles of SSK1, TCO2, SSK2, PBS2, HOG1, ENA1 and NHA1 genes were investigated to find that a biosynthesis level of ergosterol is increased when these genes are inhibited. When the genes are inhibited, a large amount of ergosterol is distributed on a fungal cell membrane. Accordingly, since there are many working points of an ergosterol-binding antifungal agent, an efficiency of the ergosterol-binding antifungal agent can be considerably improved. To regulate the Ras and cAMP pathways of Cryptococcus neoformans, roles of RAS1, RAS2, CDC24, GPA1, CAC1, ACA1, PKA1, HSP12 and HSP122 genes were investigated to find that a sensitivity to a polyene- or azole-based drug is increased when these genes are inhibited.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: April 28, 2015
    Assignee: Nutrex Technology Co., Ltd.
    Inventors: Yong-Sun Bahn, Young-Joon Ko, Shin-Ae Maeng, Kwang Woo Jung, Gyu Bum Kim
  • Publication number: 20130237446
    Abstract: Provided herein are uses of genes for HOG, Ras and cAMP signal transduction pathways to treat fungal infection. To regulate the HOG pathway of Cryptococcus neoformans, roles of SSK1, TCO2, SSK2, PBS2, HOG1, ENA1 and NHA1 genes were investigated to find that a biosynthesis level of ergosterol is increased when these genes are inhibited. When the genes are inhibited, a large amount of ergosterol is distributed on a fungal cell membrane. Accordingly, since there are many working points of an ergosterol-binding antifungal agent, an efficiency of the ergosterol-binding antifungal agent can be considerably improved. To regulate the Ras and cAMP pathways of Cryptococcus neoformans, roles of RAS1, RAS2, CDC24, GPA1, CAC1, ACA1, PKA1, HSP12 and HSP122 genes were investigated to find that a sensitivity to a polyene- or azole-based drug is increased when these genes are inhibited.
    Type: Application
    Filed: April 15, 2013
    Publication date: September 12, 2013
    Applicant: Nutrex Technology Co., Ltd.
    Inventors: Yong-Sun Bahn, Young-Joon Ko, Shin-Ae Maeng, Kwang Woo Jung, Gyu Bum Kim
  • Publication number: 20120093817
    Abstract: Provided herein are uses of genes for HOG, Ras and cAMP signal transduction pathways to treat fungal infection. To regulate the HOG pathway of Cryptococcus neoformans, roles of SSK1, TCO2, SSK2, PBS2, HOG1, ENA1 and NHA1 genes were investigated to find that a biosynthesis level of ergosterol is increased when these genes are inhibited. When the genes are inhibited, a large amount of ergosterol is distributed on a fungal cell membrane. Accordingly, since there are many working points of an ergosterol-binding antifungal agent, an efficiency of the ergosterol-binding antifungal agent can be considerably improved. To regulate the Ras and cAMP pathways of Cryptococcus neoformans, roles of RAS1, RAS2, CDC24, GPA1, CAC1, ACA1, PKA1, HSP12 and HSP122 genes were investigated to find that a sensitivity to a polyene- or azole-based drug is increased when these genes are inhibited.
    Type: Application
    Filed: January 8, 2010
    Publication date: April 19, 2012
    Inventors: Yong-Sun Bahn, Young-Joon Ko, Shin-Ae Maeng, Kwang Woo Jung, Gyu Bum Kim