Patents by Inventor Shin Hotta

Shin Hotta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130181721
    Abstract: A battery pack and a method of inspecting a storage state of a secondary battery in the battery pack are provided. In the method of inspecting a storage state of a secondary battery in the battery pack, the battery pack includes (A) a plurality of secondary batteries and (B) a housing, the housing having a plurality of storage sections and containing the secondary batteries in the respective storage sections; a conductive member 30 is attached to an outer surface of each of the secondary batteries made of a non-conductive material; each of the storage sections is provided with at least two detection sections; and depending on a storage state of each of the secondary batteries in each of the storage sections, two detection sections are in contact with the conductive member, or at least one detection section is not in contact with the conductive member.
    Type: Application
    Filed: September 5, 2011
    Publication date: July 18, 2013
    Applicant: SONY CORPORATION
    Inventors: Atsushi Ozawa, Shin Hotta, Kentaro Marutani, Shinichi Uesaka
  • Publication number: 20130177783
    Abstract: A battery pack and a simple construction is provided. The battery pack includes a plurality of secondary batteries, a housing storing the plurality of secondary batteries, and an inspection circuit stored in the housing. The housing includes a main body section and a closing member to close an opening for taking the plurality of secondary batteries in and out of the main body section, and includes a plurality of fixing members for fixing the closing member on the main body section, the plurality of fixing members being made of a conductive material. An attachment state of the fixing members with respect to the closing member and the main body section is monitored by the inspection circuit, and an attachment order of the fixing members with respect to the closing member and the main body section is memorized by the inspection circuit.
    Type: Application
    Filed: September 5, 2011
    Publication date: July 11, 2013
    Applicant: SONY CORPORATION
    Inventors: Kentaro Marutani, Atsushi Ozawa, Shin Hotta, Shinichi Uesaka
  • Publication number: 20130171481
    Abstract: A battery pack is provided. The battery pack has a plurality of secondary batteries and an inspection circuit. When the plurality of secondary batteries are classified into a first secondary battery group configured of secondary batteries selected from the plurality of secondary batteries and a second secondary battery group configured of remaining secondary batteries not belonging to the first secondary battery group, the inspection circuit creates a first data string of the secondary batteries configuring the second secondary battery group, based on a predetermined arithmetic rule, from identification marks of the secondary batteries configuring the first secondary battery group, obtains a second data string by examining identification marks of the secondary batteries configuring the second secondary battery group, subsequently compares the first data string with the second data string, and stops a function of the battery pack when the first data string and the second data string do not match.
    Type: Application
    Filed: September 5, 2011
    Publication date: July 4, 2013
    Applicant: SONY CORPORATION
    Inventors: Shin Hotta, Atsushi Ozawa, Kentaro Marutani, Shinichi Uesaka
  • Publication number: 20130169231
    Abstract: The present invention relates to an electric storage unit group, a charger, an electronic device, an electric vehicle, a method for charging the electric storage unit, a method for discharging the electric storage unit group, a method for supplying and receiving power, and a method for determining a charging/discharging route in the electric storage unit group, which can provide a method for charging the electric storage unit group in which a plurality of electric storage units are connected in a desired form. The method for charging the electric storage unit group is a method for charging a rechargeable battery cell in an electric storage unit group in which a plurality of electric storage units having rechargeable battery cells are linearly or reticulately connected. At an upstream side of the electric storage unit group, the electric storage unit group is connected to a power supply for charging the electric storage units.
    Type: Application
    Filed: September 9, 2011
    Publication date: July 4, 2013
    Applicant: SONY CORPORATION
    Inventor: Shin Hotta
  • Publication number: 20120196395
    Abstract: A method for crystallizing a thin film A gate insulating film formed on a substrate so as to cover a gate electrode. A light absorption layer is formed thereon through a buffer layer. Energy lines Lh are applied to the light absorption layer from a continuous-wave laser such as a semiconductor laser. This anneals only a surface side of the light absorption layer Lh and produces a crystalline silicon film obtained by crystallizing the amorphous silicon film using heat generated by thermal conversion of the energy lines Lh at the light absorption layer and heat of the annealing reaction.
    Type: Application
    Filed: April 6, 2012
    Publication date: August 2, 2012
    Applicant: Sony Corporation
    Inventors: Nobuhiko UMEZU, Koichi TSUKIHARA, Goh MATSUNOBU, Yoshio INAGAKI, Koichi TATSUKI, Shin HOTTA, Katsuya SHIRAI
  • Publication number: 20120107651
    Abstract: An assembled battery includes a plurality of secondary battery cell series modules each having a plurality of secondary battery cells connected in series, wherein in each secondary battery cell series module, the secondary battery cells are connected in series by a first connection member, the secondary battery cell constituting the secondary battery cell series module and the secondary battery cell constituting the secondary battery cell series module adjacent to the above secondary battery cell series module are connected in parallel by a second connection member, the electrical resistance value of the second connection member is higher than the electrical resistance value of the first connection member, and the melting point of a material constituting the second connection member is lower than the melting point of a material constituting the first connection member.
    Type: Application
    Filed: October 17, 2011
    Publication date: May 3, 2012
    Applicant: SONY CORPORATION
    Inventors: Shin Hotta, Shinichi Uesaka
  • Patent number: 8168518
    Abstract: A gate insulating film (13) is formed on a substrate (1) so as to cover a gate electrode (11), and an amorphous silicon film (semiconductor thin film) (15) is further formed. A light absorption layer (19) is formed thereon through a buffer layer (17). Energy lines Lh are applied to the light absorption layer (19) from a continuous-wave laser such as a semiconductor laser. This oxidizes only a surface side of the light absorption layer Lh and produces a beautiful crystalline silicon film (15a) obtained by crystallizing the amorphous silicon film (15) using heat generated by thermal conversion of the energy lines Lh at the light absorption layer (19) and heat of the oxidation reaction. This provides a method for crystallizing a thin film with good controllability at low costs achieved with simpler process.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: May 1, 2012
    Assignee: Sony Corporation
    Inventors: Nobuhiko Umezu, Koichi Tsukihara, Goh Matsunobu, Yoshio Inagaki, Koichi Tatsuki, Shin Hotta, Katsuya Shirai
  • Publication number: 20120072042
    Abstract: A power supply device including: (a) a power supply unit group composed of a plurality of power supply units and connected with a power consuming appliance; and (b) a control device configured to control the power supply unit group, wherein the control device and each of the power supply units are connected to each other by a communicating circuit.
    Type: Application
    Filed: September 12, 2011
    Publication date: March 22, 2012
    Applicant: SONY CORPORATION
    Inventors: Shiho Moriai, Tsuyoshi Masato, Shinichi Uesaka, Atsushi Ozawa, Masanobu Katagi, Tomoyuki Ono, Kazuhito Tsuchida, Shin Hotta, Kazuo Nakamura, Kentaro Marutani
  • Publication number: 20120062180
    Abstract: A power supply unit includes: (A) a housing having a shape like a polygonal column; (B) a secondary battery cell contained in the housing; (C) charge/discharge control means contained in the housing and connected to the secondary battery cell; (D) at least one power input section disposed on the housing and connected to the charge/discharge control means; and (E) at least one power output section disposed on the housing and connected to the charge/discharge control means.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 15, 2012
    Inventors: Kazuo NAKAMURA, Shinichi UESAKA, Tsuyoshi MASATO, Atsushi OZAWA, Shin HOTTA, Kentaro MARUTANI
  • Publication number: 20110096209
    Abstract: A shading correction method includes dividing a light receiving region of a solid-state image capturing element, in which pixels including light receiving elements are disposed, into areas; irradiating each of the areas with light, which is emitted from a light source serving as a reference, via an image forming optical system so that a size of a spot of the light corresponds to a size of the area; storing a sensitivity value of each of the areas in an area-specific-sensitivity memory; calculating shading correction values for all of the pixels of the solid-state image capturing element from the sensitivity values; storing the shading correction values for all of the pixels in a correction-value memory; and correcting signals of the individual pixels, which have been obtained using image capture by the solid-state image capturing element, using the corresponding shading correction values for the individual pixels.
    Type: Application
    Filed: October 19, 2010
    Publication date: April 28, 2011
    Applicant: SONY CORPORATION
    Inventor: Shin Hotta
  • Publication number: 20100159619
    Abstract: A gate insulating film (13) is formed on a substrate (1) so as to cover a gate electrode (11), and an amorphous silicon film (semiconductor thin film) (15) is further formed. A light absorption layer (19) is formed thereon through a buffer layer (17). Energy lines Lh are applied to the light absorption layer (19) from a continuous-wave laser such as a semiconductor laser. This oxidizes only a surface side of the light absorption layer Lh and produces a beautiful crystalline silicon film (15a) obtained by crystallizing the amorphous silicon film (15) using heat generated by thermal conversion of the energy lines Lh at the light absorption layer (19) and heat of the oxidation reaction. This provides a method for crystallizing a thin film with good controllability at low costs achieved with simpler process.
    Type: Application
    Filed: April 30, 2008
    Publication date: June 24, 2010
    Applicant: SONY CORPORATION
    Inventors: Nobuhiko Umezu, Koichi Tsukihara, Goh Matsunobu, Yoshio Inagaki, Koichi Tatsuki, Shin Hotta, Katsuya Shirai
  • Publication number: 20070178674
    Abstract: A laser annealing device (10) includes a laser oscillator (12), radiating a pulsed laser light beam of a preset period, and an illuminating optical system (15) for illuminating a pulsed laser light beam to an amorphous silicon film (1). The illuminating optical system (15) manages control for moving a laser spot so that a plural number of light pulses will be illuminated on the same location on the amorphous silicon film (1). The laser oscillator (12) radiates a laser light beam of a pulse generation period shorter than the reference period. The reference period is a time interval as from the radiation timing of illumination of a pulsed laser light beam on the surface of the film (1) until the timing of reversion of the substrate temperature raised due to the illumination of the laser light beam to the original substrate temperature.
    Type: Application
    Filed: March 23, 2007
    Publication date: August 2, 2007
    Applicant: SONY CORPORATION
    Inventors: Yutaka Imai, Nobuhito Umezu, Akihiko Asano, Shin Hotta, Koichi Tatsuki, Atsushi Fukumoto, Shigeo Kubota
  • Publication number: 20050269298
    Abstract: A light irradiator used as a laser annealing apparatus is provided which includes a controller (9) which controls a solid-state laser (4) to make pulse-on operation by detecting that the angle of rotation of a rotating shaft (7a) becomes +? after the rotating direction of the rotating shaft (7a) changes from clockwise to counterclockwise and then make pulse-off operation by detecting that the angle of rotation become ??, while controlling the solid-state laser (4) to make the pulse-on operation by detecting that the angle of rotation becomes ?? after the rotating direction changes from counterclockwise to clockwise and then make the pulse-off operation by detecting that the angle of rotation becomes +?.
    Type: Application
    Filed: October 24, 2003
    Publication date: December 8, 2005
    Inventors: Shin Hotta, Koichi Tsukihara, Akifumi Ohshima, Takashi Mizusawa, Masaaki Abe
  • Publication number: 20050252894
    Abstract: A laser annealing device (10) includes a laser oscillator (12), radiating a pulsed laser light beam of a preset period, and an illuminating optical system (15) for illuminating a pulsed laser light beam to an amorphous silicon film (1). The illuminating optical system (15) manages control for moving a laser spot so that a plural number of light pulses will be illuminated on the same location on the amorphous silicon film (1). The laser oscillator (12) radiates a laser light beam of a pulse generation period shorter than the reference period. The reference period is a time interval as from the radiation timing of illumination of a pulsed laser light beam on the surface of the film (1) until the timing of reversion of the substrate temperature raised due to the illumination of the laser light beam to the original substrate temperature.
    Type: Application
    Filed: July 8, 2005
    Publication date: November 17, 2005
    Inventors: Yutaka Imai, Nobuhiko Umezu, Akihiko Asano, Shin Hotta, Koichi Tatsuki, Atsushi Fukumoto, Shigeo Kubota
  • Publication number: 20040097103
    Abstract: A laser annealing device (10) includes a laser oscillator (12), radiating a pulsed laser light beam of a preset period, and an illuminating optical system (15) for illuminating a pulsed laser light beam to an amorphous silicon film (1). The illuminating optical system (15) manages control for moving a laser spot so that a plural number of light pulses will be illuminated on the same location on the amorphous silicon film (1). The laser oscillator (12) radiates a laser light beam of a pulse generation period shorter than the reference period. The reference period is a time interval as from the radiation timing of illumination of a pulsed laser light beam on the surface of the film (1) until the timing of reversion of the substrate temperature raised due to the illumination of the laser light beam to the original substrate temperature.
    Type: Application
    Filed: December 15, 2003
    Publication date: May 20, 2004
    Inventors: Yutaka Imai, Nobuhiko Umezu, Akihiko Asano, Shin Hotta, Koichi Tatsuki, Atsushi Fukumoto, Shigeo Kubota